Understanding pilot biodynamical feedthrough coupling in helicopter adverse roll axis instability via lateral cyclic feedback control
Article dans une revue avec comité de lecture
Date
2016Journal
Aerospace Science and TechnologyRésumé
The paper reassesses the mechanism of biodynamical feedthrough coupling to helicopter body motion in lateral-roll helicopter tasks. An analytical bio-aeroelastic pilot–vehicle model is first developed and tested for various pilot's neuromuscular adaptions in the lateral/roll axis helicopter tasks. The results demonstrate that pilot can destabilize the low-frequency regressing lead-lag rotor mode; however he/she is destabilizing also the high-frequency advancing lag rotor mode. The mechanism of pilot destabilization involves three vicious energy circles, i.e. lateral-roll, flap-roll and flap-lag motions, in a very similar manner as in the air resonance phenomenon. For both modes, the destabilization is very sensitive to an increase of the steady state rotor coning angle that increases the energy transfers from flap to lag motion through Coriolis forces. The analytical linear time-invariant model developed in this paper can be also used to investigate designs proneness to lateral/roll aeroelastic rotorcraft–pilot couplings.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Communication avec acteA contribution is proposed for the modeling of mechanical systems using multibond graphs. When modeling a physical system, it may be needed to catch the dynamic behavior contribution of the joints between bodies of the ...
-
Communication avec acteThis paper describes an energetic method using multibond graphs to model multi-physical systems. Its potential in building physical meaningful graphs that represent equivalent mathematical models of classic analytical ...
-
Communication avec acteUnder certain flight conditions, a rotorcraft fuselage motions and vibrations might interact with its pilot voluntary and involuntary actions leading to potentially dangerous dynamic instabilities known as rotorcraft-pilot ...
-
Communication avec acteCHIKHAOUI, Zeineb; PAVEL, Marilena; BARRE, Pierre-Jean; GOMAND, Julien; MALBURET, François (American Helicopter Society (AHS) International, 2013)The paper presents an energetic method of helicopters dynamics analysis to study the air resonance (AR) phenomena. First, a brief state of art of AR phenomena is presented and a simple energetic explanation is given. ...
-
Communication avec acteIn this paper, a complex multiphysics system is modeled using two different energy-based graphical techniques: Bond Graph and Energetic Macroscopic Representation. These formalisms can be used together to analyze, model ...