Show simple item record

dc.contributor.author
 hal.structure.identifier
ALLENA, Rachele
99538 Laboratoire de biomécanique [LBM]
dc.date.accessioned2014
dc.date.available2014
dc.date.issued2013
dc.date.submitted2014
dc.identifier.issn0092-8240
dc.identifier.urihttp://hdl.handle.net/10985/8580
dc.description.abstractCell migration triggered by pseudopodia (or “false feet”) is the most used method of locomotion. A 3D finite element model of a cell migrating over a 2D substrate is proposed, with a particular focus on the mechanical aspects of the biological phenomenon. The decomposition of the deformation gradient is used to reproduce the cyclic phases of protrusion and contraction of the cell, which are tightly synchronized with the adhesion forces at the back and at the front of the cell, respectively. First, a steady active deformation is considered to show the ability of the cell to simultaneously initiate multiple pseudopodia. Here, randomness is considered as a key aspect, which controls both the direction and the amplitude of the false feet. Second, the migration process is described through two different strategies: the temporal and the spatial sensing models. In the temporal model, the cell “sniffs” the surroundings by extending several pseudopodia and only the one that receives a positive input will become the new leading edge, while the others retract. In the spatial model instead, the cell senses the external sources at different spots of the membrane and only protrudes one pseudopod in the direction of the most attractive one.
dc.language.isoen
dc.publisherSpringer Verlag
dc.rightsPost-print
dc.subjectCell migration
dc.subjectPseudopodia
dc.subjectComputational mechanics
dc.subjectTemporal and spatial model
dc.titleCell Migration with Multiple Pseudopodia : Temporal and Spatial Sensing Models
dc.title.alternativeCell Migration with Multiple Pseudopodia: Temporal and Spatial Sensing Models
dc.identifier.doi10.1007/s11538-012-9806-1
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Paris
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Biomécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des structures
dc.subject.halSciences du vivant: ingénierie bio-médicale
ensam.audienceInternationale
ensam.page288-316
ensam.journalBulletin of Mathematical Biology
ensam.volume75
ensam.issue2
hal.identifierhal-01066818
hal.version1
hal.statusaccept
dc.identifier.eissn1522-9602


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record