• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • View Item
  • Home
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cell Migration with Multiple Pseudopodia : Temporal and Spatial Sensing Models

Article dans une revue avec comité de lecture
Author
ALLENA, Rachele
99538 Laboratoire de biomécanique [LBM]

URI
http://hdl.handle.net/10985/8580
DOI
10.1007/s11538-012-9806-1
Date
2013
Journal
Bulletin of Mathematical Biology

Abstract

Cell migration triggered by pseudopodia (or “false feet”) is the most used method of locomotion. A 3D finite element model of a cell migrating over a 2D substrate is proposed, with a particular focus on the mechanical aspects of the biological phenomenon. The decomposition of the deformation gradient is used to reproduce the cyclic phases of protrusion and contraction of the cell, which are tightly synchronized with the adhesion forces at the back and at the front of the cell, respectively. First, a steady active deformation is considered to show the ability of the cell to simultaneously initiate multiple pseudopodia. Here, randomness is considered as a key aspect, which controls both the direction and the amplitude of the false feet. Second, the migration process is described through two different strategies: the temporal and the spatial sensing models. In the temporal model, the cell “sniffs” the surroundings by extending several pseudopodia and only the one that receives a positive input will become the new leading edge, while the others retract. In the spatial model instead, the cell senses the external sources at different spots of the membrane and only protrudes one pseudopod in the direction of the most attractive one.

Files in this item

Name:
LBM_BMB_ALLENA_2013.pdf
Size:
2.024Mb
Format:
PDF
View/Open

Collections

  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)

Related items

Showing items related by title, author, creator and subject.

  • Mechanical modelling of confined cell migration across constricted-curved micro-channels 
    Article dans une revue avec comité de lecture
    ALLENA, Rachele (Tech Science Press, 2014)
    Confined migration is a crucial phenomenon during embryogenesis, immune response and cancer. Here, a two-dimensional finite element model of a HeLa cell migrating across constricted-curved micro-channels is proposed. The ...
  • Simulating the Remodelling of Bone around Implants 
    Communication sans acte
    FRAME, Jamie C.; CORTÉ, Laurent; ALLENA, Rachele; ccROHAN, Pierre-Yves (2017)
    Introduction Improper osseointegration of implants leading to poor mechanical anchoring or embrittlement of neighboring bone is a major concern in orthopedic surgery [1?]. This integration is known to depend on the complex ...
  • A mechanical model to investigate the role of the nucleus during confined cell migration 
    Article dans une revue avec comité de lecture
    ALLENA, Rachele; THIAM, Hui; PIEL, Mathieu; AUBRY, Denis (Taylor & Francis, 2015)
    1. Introduction Cell migration in confinement plays a fundamental role in biological processes such as embryogenesis, immune response and tumorogenesis. Specifically, tumor cells continuously adapt their migratory ...
  • Group Creativity in Biomedical Engineering Education 
    Communication sans acte
    BOURGEOIS-BOUGRINE, Samira; ccSANDOZ, Baptiste; ALLENA, Rachele; DALLEZ, Barbara (2015)
    Aim: The present study focuses on a group creativity approach tested during a 5-day interdisciplinary seminar involving 12 members of the teaching team, a creativity facilitator and 87 students from various nationalities ...
  • A general method for the determination of the local orthotropic directions of heterogeneous materials: application to bone structures using µCT images 
    Article dans une revue avec comité de lecture
    CLUZEL, Christophe; ALLENA, Rachele (International Research Center for Mathematics & Mechanics of Complex Systems (M&MoCS),University of L’Aquila in Italy, 2018)
    To assess the degree (i.e., isotropy, transverse isotropy, or orthotropy) and the directions of anisotropy of a three-dimensional structure, information about its mesostructure is necessary. Usually, a topological analysis ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales