Show simple item record

dc.contributor.author
 hal.structure.identifier
CHERUBINI, Stefania
19097 Dipartimento di Ingegneria Meccanica e Gestionale [DIMEG]
dc.contributor.author
 hal.structure.identifier
LERICHE, Emmanuel
1252 Laboratoire de Mécanique de Lille - FRE 3723 [LML]
dc.contributor.author
 hal.structure.identifier
ROBINET, Jean-Christophe
134975 Laboratoire de Dynamique des Fluides [DynFluid]
dc.contributor.authorLOISEAU, Jean-Christophe
dc.date.accessioned2014
dc.date.available2014
dc.date.issued2014
dc.date.submitted2014
dc.identifier.issn0022-1120
dc.identifier.urihttp://hdl.handle.net/10985/8974
dc.description.abstractThe linear global instability and resulting transition to turbulence induced by an isolated cylindrical roughness element of height h and diameter d immersed within an incompressible boundary layer flow along a flat plate is investigated using the joint application of direct numerical simulations and fully three-dimensional global stability analyses. For the range of parameters investigated, base flow computations show that the roughness element induces a wake composed of a central low-speed region surrounded by a three-dimensional shear layer and a pair of low- and high-speed streaks on each of its sides. Results from the global stability analyses highlight the unstable nature of the central low-speed region and its crucial importance in the laminar–turbulent transition process. It is able to sustain two different global instabilities: a sinuous and a varicose one. Each of these globally unstable modes is related to a different physical mechanism. While the varicose mode has its root in the instability of the whole three-dimensional shear layer surrounding the central low-speed region, the sinuous instability turns out to be similar to the von Kármán instability in the two-dimensional cylinder wake and has its root in the lateral shear layers of the separated zone. The aspect ratio of the roughness element plays a key role on the selection of the dominant instability: whereas the flow over thin cylindrical roughness elements transitions due to a sinuous instability of the near-wake region, for larger roughness elements the varicose instability of the central low-speed region turns out to be the dominant one. Direct numerical simulations of the flow past an aspect ratio 1 roughness element sustaining only the sinuous instability have revealed that the bifurcation occurring in this particular case is supercritical. Finally, comparison of the transition thresholds predicted by global linear stability analyses with the von Doenhoff–Braslow transition diagram provides qualitatively good agreement
dc.language.isoen
dc.publisherCambridge University Press (CUP)
dc.rightsPre-print
dc.subjectboundary layers, instability, transition to turbulence
dc.subjectcouche limite, instabilité, transition vers la turbulence
dc.titleInvestigation of the roughness-induced transition: global stability analyses and direct numerical simulations
dc.identifier.doi10.1017/jfm.2014.589
dc.typdocArticle dans une revue avec comité de lecture
dc.localisationCentre de Paris
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des fluides
ensam.audienceInternationale
ensam.page175-211
ensam.journalJournal of Fluid Mechanics
ensam.volume760
ensam.languagefr
hal.identifierhal-01086744
hal.version1
hal.submission.permittedupdateMetadata
hal.statusaccept
dc.identifier.eissn1469-7645


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record