Predictive RANS simulations via Bayesian Model-Scenario Averaging
Article dans une revue avec comité de lecture
Date
2014Journal
Journal of Computational PhysicsRésumé
The turbulence closure model is the dominant source of error in most Reynolds-Averaged Navier–Stokes simulations, yet no reliable estimators for this error component currently exist. Here we develop a stochastic, a posteriori error estimate, calibrated to specific classes of flow. It is based on variability in model closure coefficients across multiple flow scenarios, for multiple closure models. The variability is estimated using Bayesian calibration against experimental data for each scenario, and Bayesian Model-Scenario Averaging (BMSA) is used to collate the resulting posteriors, to obtain a stochastic estimate of a Quantity of Interest (QoI) in an unmeasured (prediction) scenario. The scenario probabilities in BMSA are chosen using a sensor which automatically weights those scenarios in the calibration set which are similar to the prediction scenario. The methodology is applied to the class of turbulent boundary-layers subject to various pressure gradients. For all considered prediction scenarios the standard-deviation of the stochastic estimate is consistent with the measurement ground truth. Furthermore, the mean of the estimate is more consistently accurate than the individual model predictions.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Communication avec acteBUFI, Elio Antonio; CINNELLA, Paola; MERLE, Xavier; CINNELLA, Paola (ASME, 2015)The design of an efficient organic rankine cycle (ORC) expander needs to take properly into account strong real gas effects that may occur in given ranges of operating conditions, which can also be highly variable. In this ...
-
Article dans une revue avec comité de lectureGOMAR, Adrien; BOUVY, Quentin; SICOT, Frédéric; DUFOUR, Guillaume; CINNELLA, Paola; FRANCOIS, Benjamin (Elsevier, 2014)The convergence of Fourier-based time methods applied to turbomachinery flows is assessed. The focus is on the harmonic balance method, which is a timedomain Fourier-based approach standing as an efficient alternative to ...
-
Article dans une revue avec comité de lectureEDELING, Wouter Nico; CINNELLA, Paola; DWIGHT, Richard P.; BIJL, H. (Elsevier, 2014)In this paper we are concerned with obtaining estimates for the error in Reynolds-Averaged Navier-Stokes (RANS) simulations based on the Launder-Sharma k−ε turbulence closure model, for a limited class of flows. In particular ...
-
Article dans une revue avec comité de lectureCONGEDO, Pietro; CORRE, Christophe; CINNELLA, Paola (American Institute of Aeronautics and Astronautics, 2007)High-performance airfoils for transonic flows of Bethe–Zel’dovich–Thompson fluids are constructed using a robust and efficient Euler flow solver coupled with a multi-objective genetic algorithm. Bethe–Zel’dovich– Thompson ...
-
Communication avec acteMany recent studies suggest that supercritical Organic Rankine Cycles have a great potential for lowtemperature heat recovery applications, since they allow better recovery efficiency for a simplified cycle architecture. ...