• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Dynamique des Fluides (DynFluid)
  • Voir le document
  • Accueil de SAM
  • Dynamique des Fluides (DynFluid)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bayesian estimates of parameter variability in the k − ε turbulence model

Article dans une revue avec comité de lecture
Auteur
EDELING, Wouter Nico
CINNELLA, Paola
134975 Laboratoire de Dynamique des Fluides [DynFluid]
DWIGHT, Richard P.
BIJL, H.

URI
http://hdl.handle.net/10985/10077
DOI
10.1016/j.jcp.2013.10.027
Date
2014
Journal
Journal of Computational Physics

Résumé

In this paper we are concerned with obtaining estimates for the error in Reynolds-Averaged Navier-Stokes (RANS) simulations based on the Launder-Sharma k−ε turbulence closure model, for a limited class of flows. In particular we search for estimates grounded in uncertainties in the space of model closure coeffi-cients, for wall-bounded flows at a variety of favourable and adverse pressure gradients. In order to estimate the spread of closure coefficients which repro-duces these flows accurately, we perform 13 separate Bayesian calibrations – each at a different pressure gradient – using measured boundary-layer velocity profiles, and a statistical model containing a multiplicative model inadequacy term in the solution space. The results are 13 joint posterior distributions over coefficients and hyper-parameters. To summarize this information we compute Highest Posterior-Density (HPD) intervals, and subsequently represent the to-tal solution uncertainty with a probability-box (p-box). This p-box represents both parameter variability across flows, and epistemic uncertainty within each calibration. A prediction of a new boundary-layer flow is made with uncer-tainty bars generated from this uncertainty information, and the resulting error estimate is shown to be consistent with measurement data.

Fichier(s) constituant cette publication

Nom:
Edeling_submission.pdf
Taille:
2.200Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Dynamique des Fluides (DynFluid)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Estimation of Model Error Using Bayesian Model-Scenario Averaging with Maximum a Posterori-Estimates 
    Ouvrage scientifique
    SCHMELZER, Martin; DWIGHT, Richard P.; EDELING, Wouter Nico; CINNELLA, Paola (Springer International Publishing, 2019-07)
  • Simplex-stochastic collocation method with improved scalability 
    Article dans une revue avec comité de lecture
    EDELING, Wouter Nico; DWIGHT, Richard P.; CINNELLA, Paola (Elsevier, 2016)
    The Simplex-Stochastic Collocation (SSC) method is a robust tool used to propagate uncertain input distributions through a computer code. However, it becomes prohibitively expensive for problems with dimensions higher than ...
  • Bayesian Predictions of Reynolds-Averaged Navier–Stokes Uncertainties Using Maximum a Posteriori Estimates 
    Article dans une revue avec comité de lecture
    CINNELLA, Paola; SCHMELZER, Martin; EDELING, Wouter Nico (American Institute of Aeronautics and Astronautics, 2018)
    Computational fluid dynamics analyses of high-Reynolds-number flows mostly rely on the Reynolds-averaged Navier–Stokes equations. The associated closure models are based on multiple simplifying assumptions and involve ...
  • Data-Free and Data-Driven RANS Predictions with Quantified Uncertainty 
    Article dans une revue avec comité de lecture
    EDELING, Wouter Nico; IACCARINO, Gianluca; CINNELLA, Paola (Springer Verlag (Germany), 2017)
    For the purpose of estimating the epistemic model-form uncertainty in Reynolds-Averaged Navier-Stokes closures, we propose two transport equations to locally perturb the Reynolds stress tensor of a given baseline eddy-viscosity ...
  • Data-Driven Deterministic Symbolic Regression of Nonlinear Stress-Strain Relation for RANS Turbulence Modelling 
    Communication avec acte
    SCHMELZER, Martin; DWIGHT, Richard P.; CINNELLA, Paola (American Institute of Aeronautics and Astronautics, 2018)
    This work presents developments towards a deterministic symbolic regression method to derive algebraic Reynolds-stress models for the Reynolds-Averaged Navier-Stokes (RANS) equations. The models are written as tensor ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales