Investigation of ductility limits based on bifurcation theory coupled with continuum damage mechanics
Article dans une revue avec comité de lecture
Date
2016Journal
Materials and DesignRésumé
The ductility limits of an St14 steel are investigated using an elastic‒plastic‒damage model and bifurcation theory. An associative J2-flow theory of plasticity is coupled with damage within the framework of continuum damage mechanics. For strain localization prediction, the bifurcation analysis is adopted. Both the constitutive equations and the localization bifurcation criterion are implemented into the finite element code ABAQUS, within the framework of large strains and a fully three-dimensional formulation. The material parameters associated with the fully coupled elastic‒plastic‒damage model are calibrated based on experimental tensile tests together with an inverse identification procedure. The above-described approach allows the forming limit diagrams of the studied material to be determined, which are then compared with experimental measurements. A main conclusion of the current study is that the proposed approach is able to provide predictions that are in good agreement with experiments under the condition of accurate material parameter calibration. The latter requires a careful identification strategy based on both calibrated finite element simulations of tensile tests at large strains and appropriately selected necking measurements. The resulting approach represents a useful basis for setting up reliable ductility limit prediction tools as well as effective parameter identification strategies.
Fichier(s) constituant cette publication
- Nom:
- LEM3_MATERDESIGN_2015_BOUKTIR
- Taille:
- 1.413Mo
- Format:
- Fin d'embargo:
- 2017-11-08
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureIn this paper, the conditions for the occurrence of diffuse and localized necking in thin sheet metals are investigated. The prediction of these necking phenomena is undertaken using an elastic‒plastic model coupled with ...
-
Communication avec acteIn this work, an elastic–plastic model with Hill’48 anisotropic yield surface is coupled with the continuum damage mechanics theory and combined with the bifurcation analysis, in order to predict strain localization in ...
-
Communication avec actePlastic instabilities such as diffuse or localized necking may occur during sheet metal forming processes, thus limiting sheet metal formability, which is detrimental to industry. The formability of sheet metals is usually ...
-
Article dans une revue avec comité de lectureThin structures are commonly designed and employedin engineering industries to save material, reduce weight and improve the overall performance of products. The finite element (FE) simulation of such thin structural ...
-
Article dans une revue avec comité de lectureIn this contribution, the formulation of the SHB8PS continuum shell finite element is extended to anisotropic elastic-plastic behavior models with combined isotropic-kinematic hardening at large deformations. The resulting ...