Application of the generalized lambda distributions in a statistical process control methodology
Article dans une revue avec comité de lecture
Date
2006Journal
Journal of Process ControlRésumé
In statistical process control (SPC) methodology, quantitative standard control charts are often based on the assumption that the observations are normally distributed. In practice, normality can fail and consequently the determination of assignable causes may result in error. After pointing out the limitations of hypothesis testing methodology commonly used for discriminating between Gaussian and non-Gaussian populations, a very flexible family of statistical distributions is presented in this paper and proposed to be introduced in SPC methodology: the generalized lambda distributions (GLD). It is shown that the control limits usually considered in SPC are accurately predicted when modelling usual statistical laws by means of these distributions. Besides, simulation results reveal that an acceptable accuracy is obtained even for a rather reduced number of initial observations (approximately a hundred). Finally, a specific user-friendly software have been used to process, using the SPC Western Electric rules, experimental data originating from an industrial production line. This example and the fact that it enables us to avoid choosing an a priori statistical law emphasize the relevance of using the GLD in SPC.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureFOURNIER, Benjamin; RUPIN, Nicolas; BIGERELLE, Maxence; NAJJAR, Denis; IOST, Alain (Taylor & Francis, 2007)When calculating independently the false alarm rate of the eight usual runs rules used in SPC control chart, it appears that the proposed rule designed to detect mixture patterns corresponds to a Type-I error strongly lower ...
-
Article dans une revue avec comité de lectureFOURNIER, Benjamin; RUPIN, Nicolas; BIGERELLE, Maxence; NAJJAR, Denis; IOST, Alain (Elsevier, 2006)Dealing with fatigue lifetime prediction, this paper aims to report on a new statistical method combining the Lambda Distributions and the Bootstrap technique. This method is first applied for determining the Probability ...
-
Article dans une revue avec comité de lectureFOURNIER, Benjamin; RUPIN, Nicolas; BIGERELLE, Maxence; NAJJAR, Denis; IOST, Alain; WILCOX, R (Elsevier, 2007)The method of moments is a popular technique for estimating the parameters of a generalized lambda distribution (GLD), but published results suggest that the percentile method gives superior results. However, the percentile ...
-
Communication avec acteIOST, Alain; ZAHOUANI, Hassan; ANSELME, Karine; NAJJAR, Denis; GUILLEMOT, Gildas; HAGEGE, Benjamin; JOURANI, Abdeljalil; REVEL, Phllippe; MAZERAN, Pierre-Emmanuel; BIGERELLE, Maxence; EL MANSORI, Mohamed; COOREVITS, Thierry (Université de Poitiers, 2007)L'objet principal des études en morphologie des surfaces consiste à résumer l'information de manière optimale. Dans nos études, nous étudions plus particulièrement la signification physique, les méthodes numériques et les ...
-
Article dans une revue avec comité de lectureVAN GORP, Adrien; BIGERELLE, Maxence; GRELLIER, Alain; IOST, Alain; NAJJAR, Denis (Elsevier, 2007)This paper proposes a new multi-scale measurement approach performed to compare the surface roughness and the visual aspect of polished surfaces. In this investigation, five specimens of glass moulds presenting different ...