• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Signal-based versus nonlinear model-based damage sensitive features for delamination quantification in CFRP composites

Communication avec acte
Auteur
GHRIB, Meriem
BERTHE, Laurent
14421 Laboratoire d'Ingénierie des Matériaux [LIM]
ccMECHBAL, Nazih
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccGUSKOV, Mikhail
ccRÉBILLAT, Marc

URI
http://hdl.handle.net/10985/12376
Date
2017

Résumé

Structural health monitoring (SHM) is an emerging technology designed to automate the inspection process undertaken to assess the health condition of structures. The SHM process is classically decomposed into four sequential steps: detection, localization, classification, and quantification. In this paper, SHM quantification step is addressed. Particularly, we approach delamination quantification as a classification problem whereby each class corresponds to a certain damage extent. Starting from the assumption that damage causes a structure to exhibit nonlinear response, we investigate whether the use of nonlinear model based features increases classification performance. A support Vector Machine (SVM) is used to perform multi-class classification task. Two types of features are used to feed the SVM algorithm: Signal Based Features (SBF) and Nonlinear Model Based Features (NMBF). SBF are rooted in a direct use of response signals and do not consider any underlying model of the test structure. NMBF are computed based on parallel Hammerstein models which are identified with an Exponential Sine Sweep (ESS) signal. Dimensionality reduction of features vector using Principal Component Analysis (PCA) is also carried out in order to find out if it allows robustifying the quantification process suggested in this work. Experimental results on Carbon Fiber Reinforced Polymer (CFRP) composite plates equipped with piezoelectric elements and containing various delamination severities are considered for demonstration. Delamination-type damage is introduced into samples in a calibrated way using Laser Shock Wave Technique (LSWT) and more particularly symmetrical laser shock configuration. LSWT is chosen as an alternative to conventional damage generation techniques such as conventional impacts and Teflon inserts since it allows for a better calibration of damage in type, depth and size. Results show that by introducing NMBF, classification performance is improved. Furthermore, PCA allows for higher recognition rates while reducing features vector dimension.

Fichier(s) constituant cette publication

Nom:
PIMM-IWSHM-GHRIB-2017.pdf
Taille:
715.9Ko
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Laser shock a novel way to generate calibrated delamination in composites: concept and first results 
    Communication avec acte
    GHRIB, Meriem; BERTHE, Laurent; ECAULT, Romain; ccMECHBAL, Nazih; ccGUSKOV, Mikhail; ccRÉBILLAT, Marc (2015)
    Structural Health Monitoring (SHM) has been gaining importance in recent years. SHM aims at providing structures with similar functionality as the biological nervous system and it is organized into four main steps: detection, ...
  • Generation of controlled delaminations in composites using symmetrical laser shock configuration 
    Article dans une revue avec comité de lecture
    GHRIB, Meriem; BERTHE, Laurent; ECAULT, Romain; BEDREDDINE, Nas; ccMECHBAL, Nazih; ccGUSKOV, Mikhail; ccRÉBILLAT, Marc (Elsevier, 2017)
    Structural Health Monitoring (SHM) is defined as the process of implementing a damage identification strategy for aerospace, civil and mechanical engineering infrastructures. SHM can be organized into five main steps: ...
  • LASER shock delamination generation and machine learning-based damage quantification in CFRP composites plates 
    Communication avec acte
    GHRIB, Meriem; BERTHE, Laurent; ccMECHBAL, Nazih; ccGUSKOV, Mikhail; ccRÉBILLAT, Marc (A. Benjeddou and Z. Aboura, 2018)
    In the aeronautic industry, composite materials are becoming more widespread due to their high strength to mass ratio. Piezoelectric elements can be permanently incorporated on composite parts during the manufacturing ...
  • Automatic Damage Quantification Using Signal Based And Nonlinear Model Based Damage Sensitive Features 
    Communication avec acte
    GHRIB, Meriem; VERMOT DES ROCHES, Guillaume; ccMECHBAL, Nazih; ccRÉBILLAT, Marc (2017)
    Structural Health Monitoring (SHM) can be de ned as the process of acquiring and analyzing data from on-board sensors to evaluate the health of a structure. Classically, an SHM process can be performed in four steps: ...
  • Automatic damage type classification and severity quantification using signal based and nonlinear model based damage sensitive features 
    Article dans une revue avec comité de lecture
    GHRIB, Meriem; ccRÉBILLAT, Marc; VERMOT DES ROCHES, Guillaume; ccMECHBAL, Nazih (Elsevier, 2019)
    Structural health monitoring (SHM) is an emerging technology designed to automate the inspectionprocess undertaken to assess the health condition of structures. The SHM process is classically decom-posed into four sequential ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales