Multiphysics Simulation and Experimental Investigation of Aluminum Wettability on a Titanium Substrate for Laser Welding-Brazing Process
Article dans une revue avec comité de lecture
Résumé
The control of metal wettability is a key-factor in the field of brazing or welding-brazing. The present paper deals with the numerical simulation of the whole phenomena occurring during the assembly of dissimilar alloys. The study is realized in the frame of potential applications for the aircraft industry, considering the case of the welding-brazing of aluminum Al5754 and quasi-pure titanium Ti40. The assembly configuration, presented here, is a simplification of the real experiment. We have reduced the three-dimensional overlap configuration to a bi-dimensional case. In the present case, an aluminum cylinder is fused onto a titanium substrate. The main physical phenomena which are considered here are: the heat transfers, the fluid flows with free boundaries and the mass transfer in terms of chemical species diffusion. The numerical problem is implemented with the commercial software Comsol Multiphysics™, by coupling heat equation, Navier-Stokes and continuity equations and the free boundary motion. The latter is treated with the Arbitrary Lagrangian Eulerian method, with a particular focus on the contact angle implementation. The comparison between numerical and experimental results shows a very satisfactory agreement in terms of droplet shape, thermal field and intermetallic layer thickness. The model validates our numerical approach.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureMAYI, Yaasin; PEYRE, Patrice; BELLET, Michel; METTON, Charlotte; MORICONI, Clara; FABBRO, Rémy; DAL, Morgan (IOP Publishing, 2019)Although metal vaporisation has been observed in several laser processes such as drilling or welding, vapour plume expansion and its induced side effects are not fully understood. Especially, this phenomenon is garnering ...
-
Article dans une revue avec comité de lecturePEYRE, Patrice; BERTHE, Laurent; POUZET, Sébastien; SALLAMAND, Pierre; TOMASHCHUK, Iryna; DAL, Morgan (Elsevier, 2014)Laser-induced reactive wetting and brazing of T40 titanium with A5754 aluminum alloy with 1.5 mm thickness was carried out in lap-joint configuration, with or without the use of Al5Si filler wire. A 2.4 mm diameter laser ...
-
Article dans une revue avec comité de lecturePEYRE, Patrice; BERTHE, Laurent; POUZET, Sébastien; SALLAMAND, Pierre; TOMASHCHUK, Iryna; DAL, Morgan (Elsevier, 2014)Laser-induced reactive wetting and brazing of T40 titanium with A5754 aluminum alloy with 1.5 mm thickness was carried out in lap-joint configuration, with or without the use of Al5Si filler wire. A 2.4 mm diameter laser ...
-
Article dans une revue avec comité de lectureGUNENTHIRAM, Valérie; PEYRE, Patrice; COSTE, Frédéric; FABBRO, Rémy; DAL, Morgan; SCHNEIDER, Matthieu (Laser Institute of America, 2017)The laser powder bed fusion (LPBF) or powder-bed additive layer manufacturing process is now recognized as a high-potential manufacturing process for complex metallic parts. However, many technical issues are still to ...
-
Article dans une revue avec comité de lecturePEYRE, Patrice; POUZET, Sébastien; CASTELNAU, Olivier; DAL, Morgan (Laser Institute of America, 2017)The laser metal deposition (LMD) laser technique is a free-form metal deposition process, which allows generating near net-shape structures through the interaction of a powder stream and a laser beam. A simplified numerical ...