Comparison of least squares and exponential sine sweep methods for Parallel Hammerstein Models estimation
Article dans une revue avec comité de lecture
Date
2017Journal
Comparison of least squares and exponential sine sweep methods for Parallel Hammerstein Models estimationRésumé
Linearity is a common assumption for many real-life systems, but in many cases the nonlinear behavior of systems cannot be ignored and must be modeled and estimated. Among the various existing classes of nonlinear models, Parallel Hammerstein Models (PHM) are interesting as they are at the same time easy to interpret as well as to estimate. One way to estimate PHM relies on the fact that the estimation problem is linear in the parameters and thus that classical least squares (LS) estimation algorithms can be used. In that area, this article introduces a regularized LS estimation algorithm inspired on some of the recently developed regularized impulse response estimation techniques. Another mean to estimate PHM consists in using parametric or non-parametric exponential sine sweeps (ESS) based methods. These methods (LS and ESS) are founded on radically different mathematical backgrounds but are expected to tackle the same issue. A methodology is proposed here to compare them with respect to (i) their accuracy, (ii) their computational cost, and (iii) their robustness to noise. Tests are performed on simulated systems for several values of methods respective parameters and of signal to noise ratio. Results show that, for a given set of data points, the ESS method is less demanding in computational resources than the LS method but that it is also less accurate. Furthermore, the LS method needs parameters to be set in advance whereas the ESS method is not subject to conditioning issues and can be fully non-parametric. In summary, for a given set of data points, ESS method can provide a first, automatic, and quick overview of a nonlinear system than can guide more computationally demanding and precise methods, such as the regularized LS one proposed here.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Communication avec acteJAUSSAUD, Gladys; REBUFA, Jocelyn; FOURNIER, Marc; LOGEAIS, Matthieu; BENCHEIKH, Nabil; MECHBAL, Nazih; RÉBILLAT, Marc (NTD, 2019)In the context of Condition Based Maintenance (CBM) for aircrafts, Structural Health Monitoring (SHM) is one main field of research. Detection and localization of damages in a structure request reliability of the equipment ...
-
Communication avec acteREBUFA, Jocelyn; JAUSSAUD, Gladys; FOURNIER, Marc; LOGEAIS, M.; BENCHEIKH, N.; CLAEYSSEN, F.; RÉBILLAT, Marc; GUSKOV, Mikhail (A. Benjeddou, N. Mechbal and J.F. Deü, 2019)Required improvements of piezoelectric elements actuation and measurement system efficiency and robustness are introduced as a critical feature for structural health monitoring (SHM) applications. An electronic module (Lamb ...
-
Communication avec acteThe influence of temperature on SHM (Structural Health Monitoring) systems using guided waves is a major problem for their industrial deployment. One of the most used and cheapest SHM process developed in aeronautic context ...
-
Laser shock a novel way to generate calibrated delamination in composites: concept and first results Communication avec acteGHRIB, Meriem; BERTHE, Laurent; ECAULT, Romain; MECHBAL, Nazih; GUSKOV, Mikhail; RÉBILLAT, Marc (2015)Structural Health Monitoring (SHM) has been gaining importance in recent years. SHM aims at providing structures with similar functionality as the biological nervous system and it is organized into four main steps: detection, ...