Modal Analysis of Pressures on a Full-Scale Spinnaker
Article dans une revue avec comité de lecture
Résumé
While sailing offwind, the trimmer typically adjusts the downwind sail “on the verge of luffing”, occasionally letting the luff of the sail flap. Due to the unsteadiness of the spinnaker itself, maintaining the luff on the verge of luffing requires continual adjustments. The propulsive force generated by the offwind sail depends on this trimming and is highly fluctuating. During a flapping sequence, the aerodynamic load can fluctuate by 50% of the average load. On a J/80 class yacht, we simultaneously measured time-resolved pressures on the spinnaker, aerodynamic loads, boat data and wind data. Significant spatio-temporal patterns were detected in the pressure distribution. In this paper we present averages and main fluctuations of pressure distributions and of load coefficients for different apparent wind angles as well as a refined analysis of pressure fluctuations, using the Proper Orthogonal Decomposition (POD) method. POD shows that pressure fluctuations due to luffing of the spinnaker can be well represented by only one proper mode related to a unique spatial pressure pattern and a dynamic behavior evolving with the Apparent Wind Angles. The time evolution of this proper mode is highly correlated with load fluctuations. Moreover, POD can be employed to filter the measured pressures more efficiently than basic filters. The reconstruction using the first few modes makes it possible to restrict the flapping analysis to the most energetic part of the signal and remove insignificant variations and noises. This might be helpful for comparison with other measurements and numerical simulations.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Communication avec acteDEPARDAY, Julien; AUGIER, Benoit; RABAUD, Marc; MOTTA, Dario; LE PELLEY, David; BOT, Patrick; HAUVILLE, Frederic (2016)While sailing offwind, the trimmer typically adjusts the downwind sail "on the verge of luffing", letting occasionally the luff of the sail flapping. Due to the unsteadiness of the spinnaker itself, maintaining the luff ...
-
Communication avec acteDEPARDAY, Julien; MOTTA, Dario; LE PELLEY, David; FLAY, Richard G.J.; BOT, Patrick; HAUVILLE, Frederic (2014)This work presents a full-scale experimental study on a sailing yacht in downwind conditions with simultaneous time-resolved measurements of pressures, sail shape and loads. Those on-water experiments on a J/80 class yacht ...
-
Article dans une revue avec comité de lectureMOTTA, Dario; FLAY, Richard G.J.; RICHARDS, P.J.; LE PELLEY, David; DEPARDAY, Julien; BOT, Patrick (Elsevier, 2014)An innovative method combining simultaneous on-water pressure and sail shape measurements for determining aerodynamic forces produced by sails is described and used on Stewart 34 and J80 Class yachts flying asymmetric ...
-
Article dans une revue avec comité de lectureYacht downwind sails are complex to study due to their non-developable shape with high camber and massively detached flow around thin and flexible membranes. Numerical simulations can now simulate this strong fluid-structure ...
-
Communication avec acteAUGIER, Benoit; DEPARDAY, Julien; DURAND, Mathieu; BOT, Patrick; HAUVILLE, Frederic (Ecole Navale, 2013)A numerical investigation of the dynamic Fluid Structure Interaction (FSI) of a yacht sail plan submitted to harmonic pitching is presented to analyse the effects of motion simplifications and rigging adjustments on ...