• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-scale investigation of highly anisotropic zinc alloys using crystal plasticity and inverse analysis

Article dans une revue avec comité de lecture
Author
CAUVIN, Ludovic
93027 Université de Technologie de Compiègne [UTC]
RAGHAVAN, Balaji
25157 Laboratoire de Génie Civil et Génie Mécanique [LGCGM]
BOUVIER, Salima
93027 Université de Technologie de Compiègne [UTC]
WANG, Xiaodong
93027 Université de Technologie de Compiègne [UTC]
ccMERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]

URI
http://hdl.handle.net/10985/13176
DOI
10.1016/j.msea.2018.05.038
Date
2018
Journal
Materials Science and Engineering: A

Abstract

Zinc and its alloys are important industrial materials due to their high corrosion resistance, low cost and good ductility. However, the characterization of these materials remains a difficult task due to their highly anisotropic behavior, the latter being due to the influence of microstructural effects, i.e. loading orientation-dependent activation of different families of slip systems and subsequent texture evolution, rendering the development of a reliable material model considerably difficult. A micro-mechanical approach based on polycrystal plasticity would better describe the physical mechanisms underlying the macroscopic behavior. This improved model should ostensibly improve the comprehension of the mechanical behavior, compared to the macroscopic approach using solely phenomenological anisotropy models along with a prohibitively large number of experiments required to identify the material parameters. In this paper, a multi-scale Visco-Plastic Self-Consistent (VPSC) approach is used. It is based on a micro-scale model calibrated by microstructural and deformation mechanism information based on Electron Back-Scattered Diffraction (EBSD) to describe the macroscopic anisotropic mechanical response during sheet metal deformation. The critical resolved shear stress (CRSS) as well as the micro-scale crystal parameters are obtained by an inverse analysis comparing the simulated and experimental results in terms of obtained tensile curves along three different directions. In order to obtain a global solution for the identification, we then use the Covariance Matrix Adaptation-Evolution Strategy (CMA-ES) genetic algorithm to the inverse problem. We validate our approach by comparing the simulated and experimental textures and activated slip systems. Finally, the identified mechanical parameters are used to investigate the anisotropy of the alloy and predict its formability by determining the corresponding R-values and Hill yield coefficients.

Files in this item

Name:
LEM3_MSEA_2018_MERAGHNI.pdf
Size:
4.158Mb
Format:
PDF
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Related items

Showing items related by title, author, creator and subject.

  • Isogeometric homogenization of unidirectional nanocomposites with energetic surfaces 
    Article dans une revue avec comité de lecture
    DU, Xiaoxiao; CHEN, Qiang; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; WANG, Wei; ZHAO, Gang (Springer Science and Business Media LLC, 2024-04)
    The present work aims to propose an interface-enriched isogeometric analysis strategy for predicting the size-dependent effective moduli and local stress field of periodic arrays of nanosize inhomogeneity. The proposed ...
  • Isogeometric homogenization of viscoelastic polymer composites via correspondence principle 
    Article dans une revue avec comité de lecture
    ccCHEN, Qiang; DU, Xiaoxiao; WANG, Wei; ccCHATZIGEORGIOU, George; ccMERAGHNI, Fodil; ZHAO, Gang (Elsevier BV, 2023-11)
    We present an isogeometric homogenization theory (IGH) for efficiently identifying homogenized and local creep and relaxation response of linearly viscoelastic polymer composites with different microstructural parameters. ...
  • Modelling the effect of microstructure evolution on the macroscopic behavior of single phase and dual phase steels: Application to sheet forming process 
    Conférence invitée
    BOUVIER, Salima; CARVALHO RESENDE, Tales; ccBALAN, Tudor; ccABED-MERAIM, Farid (2015)
    The aim of this work is to develop a dislocation density based model for IF and DP steels that incorporates details of the microstructure evolution at the grain-size scale. The model takes into account (i) the contribution ...
  • Dislocation-based model for the prediction of the behavior of b.c.c. materials – grain size and strain path effects 
    Article dans une revue avec comité de lecture
    CARVALHO RESENDE, Tales; BOUVIER, Salima; ccABED-MERAIM, Farid; ccBALAN, Tudor; SABLIN, Simon-Serge (Elsevier, 2013)
    Sheet metal forming processes involve multi-axial strain paths. For the numerical simulation of such processes, an appropriate constitutive model that properly describes material behavior at large strain is required. For ...
  • Quantitative approach to determine the mechanical properties by nanoindentation test: Application on sandblasted materials 
    Article dans une revue avec comité de lecture
    XIA, Yang; BIGERELLE, Maxence; BOUVIER, Salima; IOST, Alain; MAZERAN, Pierre-Emmanuel (Elsevier, 2015)
    A novel method is developed to improve the accuracy in determining the mechanical properties from nanoindentation curves. The key point of this method is the simultaneous statistical treatment of several loading curves to ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales