On the coupling of local 3D solutions and global 2D shell theory in structural mechanics
Article dans une revue avec comité de lecture
Date
2019Journal
Advanced Modeling and Simulation in Engineering SciencesRésumé
Most of mechanical systems and complex structures exhibit plate and shell components. Therefore, 2D simulation, based on plate and shell theory, appears as an appealing choice in structural analysis as it allows reducing the computational complexity. Nevertheless, this 2D framework fails for capturing rich physics compromising the usual hypotheses considered when deriving standard plate and shell theories. To circumvent, or at least alleviate this issue, authors proposed in their former works an in-plane-out-of-plane separated representation able to capture rich 3D behaviors while keeping the computational complexity of 2D simulations. However, that procedure it was revealed to be too intrusive for being introduced into existing commercial softwares. Moreover, experience indicated that such enriched descriptions are only compulsory locally, in some regions or structure components. In the present paper we propose an enrichment procedure able to address 3D local behaviors, preserving the direct minimally-invasive coupling with existing plate and shell discretizations. The proposed strategy will be extended to inelastic behaviors and structural dynamics.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Structural health monitoring by combining machine learning and dimensionality reduction techniques Article dans une revue avec comité de lectureQUARANTA, Giacomo; LOPEZ, Elena; DUVAL, Jean Louis; HUERTA, Antonio; ABISSET-CHAVANNE, Emmanuelle; CHINESTA SORIA, Francisco (Universitat politecnica de Catalunya, 2019)Structural Health Monitoring is of major interest in many areas of structural mechanics. This paper presents a new approach based on the combination of dimensionality reduction and data-mining techniques able to differentiate ...
-
Article dans une revue avec comité de lectureIBÁÑEZ, Rubén; GONZÁLEZ, David; DUVAL, Jean Louis; CUETO, Elias; ABISSET-CHAVANNE, Emmanuelle; CHINESTA SORIA, Francisco (Springer Verlag, 2019)In recent times a growing interest has arose on the development of data-driven techniques to avoid the employ of phenomenological constitutive models. While it is true that, in general, data do not fit perfectly to existing ...
-
Article dans une revue avec comité de lectureGHNATIOS, Chady; ABISSET-CHAVANNE, Emmanuelle; AMMAR, Amine; CUETOS, Elias; DUVAL, Jean-Louis; CHINESTA SORIA, Francisco (Elsevier, 2019)This work aims at proposing a new procedure for parametric problems whose separated representation has been considered difficult, or whose SVD compression impacted the results in terms of performance and accuracy. The ...
-
Article dans une revue avec comité de lectureCUETO, Elías G.; DUVAL, Jean Louis; KHALDI, Fouad El; ABISSET-CHAVANNE, Emmanuelle; CHINESTA SORIA, Francisco (Springer Verlag, 2018)Engineering is evolving in the same way than society is doing. Nowadays, data is acquiring a prominence never imagined. In the past, in the domain of materials, processes and structures, testing machines allowed extract ...
-
Article dans une revue avec comité de lectureCUETO, Elías G.; DUVAL, Jean-Louis; IBAÑEZ, Ruben; ABISSET-CHAVANNE, Emmanuelle; AMMAR, Amine; CHINESTA SORIA, Francisco (Springer Verlag, 2019)Compressed sensing is a signal compression technique with very remarkable properties. Among them, maybe the most salient one is its ability of overcoming the Shannon–Nyquist sampling theorem. In other words, it is able to ...