Laser induced dynamic fracture of fused silica: Experiments and simulations
Article dans une revue avec comité de lecture
Date
2019Journal
Journal of Non-Crystalline SolidsRésumé
Fused silica samples were subjected to laser induced shock loading. Laser flux was varied in order to obtain different amounts and characteristics of damage in the samples. Three dimensional damage and fracture maps of two identical samples impacted by high and low laser flux values were obtained using both optical microscopy and X-ray computed micro-tomography. Three prevalent fracture and damage patterns were identified. Peridynamic approach was used to simulate the laser impact conditions on the samples in order to explain the causes of the observed fracture and damage morphologies. A proprietary shock physics code, ESTHER, was used to calculate the transient kinetic energy imparted to the samples based on the experimental laser flux values. The kinetic energy values were then integrated over time and provided target values to match for the peridynamic impact conditions. The main fracture patterns were captured by peridynamic simulations with reasonable quantitative accuracy. Explanations for initiation and propagation of each of the fracture patterns were presented based on the peridynamic dynamic fracture simulations. Limitations of the computational approach and recommendations for future work is provided.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureRENOU, Richard; BERTHE, Laurent; GUIN, Jean-Pierre; LOISON, Didier; SANGLEBOEUF, Jean-Christophe; NIVARD, Mariette; DEREURE, Corentin; LESCOUTE, Emilien; SOULARD, Laurent (Magdeburger Verein für Technische Mechanik e.V, 2018)Under elastic shock compression silica glass exhibits a very specific behaviour. A shock propagating inside a material is usually seen as the propagation of a discontinuity. However in silica glass, shocks are unstable and ...
-
Article dans une revue avec comité de lectureJODAR, Benjamin; LOISON, Didier; YOKOYAMA, Yoshihiko; LESCOUTE, Emilien; NIVARD, Mariette; BERTHE, Laurent; SANGLEBŒUF, Jean Christophe (IOP Publishing, 2017)Laser-shock experiments were performed on a ternary Zr50Cu40Al10bulk metallic glass. A spalling process was studied through post-mortem analyses conducted on a recovered sample and spall. Scanning electron microscopy ...
-
Article dans une revue avec comité de lectureBERTHE, Laurent; ARRIGONI, Michel; BOUSTIE, Michel; CUQ-LELANDAIS, Jean Paul; BROUSSILLOU, Cédric; FABRE, Grégory; JEANDIN, Michel; GUIPONT, Vincent; NIVARD, Mariette (Taylor & Francis, 2011)This paper proposes a state-of-the-art laser adhesion test. It consists of testing material interfaces with laser-driven shock wave. Since the first demonstration in the 1980s by Vossen, many studies and developments have ...
-
Dynamic fragmentation of graphite under laser-driven shocks: Identification of four damage regimes Article dans une revue avec comité de lectureSEISSON, Gabriel; PRUDHOMME, Gabriel; FRUGIER, Pierre Antoine; HÉBERT, David; LESCOUTE, Emilien; SOLLIER, Arnaud; VIDEAU, Laurent; MERCIER, Patrick; BOUSTIE, Michel; BERTHE, Laurent (Elsevier, 2016)This study presents the results of a large experimental campaign conducted on the Luli2000 laser facility. Thin targets of a commercial grade of porous graphite were submitted to high-power laser-driven shocks leading to ...
-
Article dans une revue avec comité de lectureBARDY, Simon; AUBERT, Bertrand; BERTHE, Laurent; COMBIS, Patrick; HEBERT, David; LESCOUTE, Emilien; RULLIER, Jean-Luc; VIDEAU, Laurent (SPIE, 2017)In order to control laser-induced shock processes, two main points of interest must be fully understood: the laser–matter interaction generating a pressure loading from a given laser intensity profile and the propagation ...