Graph Signals Classification Using Total Variation and Graph Energy Informations
Communication avec acte
Abstract
In this work, we consider the problem of graph signals classification. We investigate the relevance of two attributes, namely the total variation (TV) and the graph energy (GE) for graph signals classification. The TV is a compact and informative attribute for efficient graph discrimination. The GE information is used to quantify the complexity of the graph structure which is a pertinent information. Based on these two attributes, three similarity measures are introduced. Key of these measures is their low complexity. The effectiveness of these similarity measures are illustrated on five data sets and the results compared to those of five kernel-based methods of the literature. We report results on computation runtime and classification accuracy on graph benchmark data sets. The obtained results confirm the effectiveness of the proposed methods in terms of CPU runtime and of classification accuracy. These findings also show the potential of TV and GE informations for graph signals classification.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
Communication avec acteIn this work a new denoising scheme based on the empirical mode decomposition associated with a frequency analysis is introduced. Compared to classical approaches where the extracted modes are thresholded in time domain, ...
-
Communication avec acteLa notion de mesure de similarité est très importante dans de nombreux domaines tels que l’apprentissage statistique, la fouille de données ou les sciences cognitives. Dans cet article, nous nous intéressons à la similarité ...
-
Article dans une revue avec comité de lectureIn spite of the simple linear relationship between the adjacency A and the Laplacian L matrices, L=D-A where D is the degrees matrix, these matrices seem to reveal informations about the graph in different ways, where it ...
-
Communication avec acteIn this work, we present a new strategy for measuring the vulnerability of network connections, modeled by a graph, via the variations of the Von Neumann entropy of the density matrix associated to this graph, this one ...
-
Communication avec acteDans cet article, nous présentons une stratégie de détection d’épilepsie à partir de signaux EEG (issus d’un seul capteur) basée sur l’algorithme de visibilité, qui consiste à transformer une série temporelle en un graphe ...