• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Dynamique des Fluides (DynFluid)
  • View Item
  • Home
  • Dynamique des Fluides (DynFluid)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessment of time implicit discretizations for the computation of turbulent compressible flows

Communication avec acte
Author
CINNELLA, Paola
134975 Laboratoire de Dynamique des Fluides [DynFluid]
CEDRIC, Content

URI
http://hdl.handle.net/10985/15315
DOI
10.2514/6.2015-2754
Date
2015

Abstract

Restrictions on the maximum allowable time step of explicit time integration methods for direct and large eddy simulations of compressible turbulent flows at high Reynolds numbers can be very severe, because of the extremely small space steps used close to solid walls to capture tiny and elongated boundary layer structures. A way of increasing stability limits is to use implicit time integration schemes. However, the price to pay is a higher computational cost per time step, higher discretization errors and lower parallel scalability. A successful implicit time scheme for scale-resolving simulations should provide the best possible compromise between these opposite requirements. In this paper, several implicit schemes are assessed against two explicit time integration techniques, namely a standard four-stage and a six-stage optimized Runge–Kutta method, in terms of computational cost required to achieve a threshold level of accuracy. Precisely, a second-order backward scheme solved by means of matrix-free quasi-exact Newton subiterations is compared to time-accurate Runge–Kutta implicit residual smoothing (IRS) schemes. A new IRS scheme of fourth-order accuracy, based on a bilaplacian operator, is developed to improve the accuracy of the classical second-order approach. Numerical results show that the proposed IRS scheme leads to reductions in computational time by about a factor 5 for an accuracy comparable to that of the corresponding explicit Runge-Kutta scheme.

Files in this item

Name:
DynFluid-AIAA-2015-Cinnella.pdf
Size:
1.651Mb
Format:
PDF
View/Open

Collections

  • Dynamique des Fluides (DynFluid)

Related items

Showing items related by title, author, creator and subject.

  • Sensitivity of Supersonic ORC Turbine Injector Designs to Fluctuating Operating Conditions 
    Communication avec acte
    BUFI, Elio Antonio; CINNELLA, Paola; MERLE, Xavier; CINNELLA, Paola (ASME, 2015)
    The design of an efficient organic rankine cycle (ORC) expander needs to take properly into account strong real gas effects that may occur in given ranges of operating conditions, which can also be highly variable. In this ...
  • Estimation of Model Error Using Bayesian Model-Scenario Averaging with Maximum a Posterori-Estimates 
    Ouvrage scientifique
    SCHMELZER, Martin; DWIGHT, Richard P.; EDELING, Wouter Nico; CINNELLA, Paola (Springer International Publishing, 2019-07)
  • Dense-gas effects on compressible boundary-layer stability 
    Article dans une revue avec comité de lecture
    CINNELLA, Paola; GRASSO, Francesco; ccROBINET, Jean-Christophe; ccSCIACOVELLI, Luca; ccGLOERFELT, Xavier (Cambridge University Press (CUP), 2020)
    A study of dense-gas effects on the stability of compressible boundary-layer flows is conducted. From the laminar similarity solution, the temperature variations are small due to the high specific heat of dense gases, ...
  • Development and analysis of high-order vorticity confinement schemes 
    Article dans une revue avec comité de lecture
    PETROPOULOS, I.; COSTES, M.; CINNELLA, Paola (ELSEVIER, 2017)
    High-order extensions of the Vorticity Confinement (VC) method are developed for the accurate com- putation of vortical flows, following the VC2 conservative formulation of Steinhoff. First, a high-order formulation of VC ...
  • Numerical Investigation of Hypersonic Boundary Layers of Perfect and Dense Gases 
    Communication avec acte
    ccSCIACOVELLI, Luca; ccGLOERFELT, Xavier; ccCINNELLA, Paola; GRASSO, Francesco (Springer International Publishing, 2020-05)
    Hypersonic turbulent boundary layers (HTBL) at Mach number M =6 of a dense gas (PP11) and a perfect gas (air) are investigated by means of Direct Numerical Simulations (DNS), from the laminar to fully turbulent state. The ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales