Recent Progress in High-Order Residual-Based Compact Schemes for Compressible Flow Simulations: Toward Scale-Resolving Simulations and Complex Geometries
Ouvrage scientifique
Résumé
Recent developments about the extension of high-order Residual-Based Compact schemes to unsteady flows and complex configurations are discussed, with application to scale-resolving simulations and complex turbomachinery flows.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Communication avec acteBUFI, Elio Antonio; CINNELLA, Paola; MERLE, Xavier; CINNELLA, Paola (ASME, 2015)The design of an efficient organic rankine cycle (ORC) expander needs to take properly into account strong real gas effects that may occur in given ranges of operating conditions, which can also be highly variable. In this ...
-
Estimation of Model Error Using Bayesian Model-Scenario Averaging with Maximum a Posterori-Estimates Ouvrage scientifiqueSCHMELZER, Martin; DWIGHT, Richard P.; EDELING, Wouter Nico; CINNELLA, Paola (Springer International Publishing, 2019-07)
-
Article dans une revue avec comité de lectureCINNELLA, Paola; GRASSO, Francesco;
ROBINET, Jean-Christophe;
SCIACOVELLI, Luca;
GLOERFELT, Xavier (Cambridge University Press (CUP), 2020)
A study of dense-gas effects on the stability of compressible boundary-layer flows is conducted. From the laminar similarity solution, the temperature variations are small due to the high specific heat of dense gases, ... -
Article dans une revue avec comité de lecturePETROPOULOS, I.; COSTES, M.; CINNELLA, Paola (ELSEVIER, 2017)High-order extensions of the Vorticity Confinement (VC) method are developed for the accurate com- putation of vortical flows, following the VC2 conservative formulation of Steinhoff. First, a high-order formulation of VC ...
-
Communication avec acte
SCIACOVELLI, Luca;
GLOERFELT, Xavier;
CINNELLA, Paola; GRASSO, Francesco (Springer International Publishing, 2020-05)
Hypersonic turbulent boundary layers (HTBL) at Mach number M =6 of a dense gas (PP11) and a perfect gas (air) are investigated by means of Direct Numerical Simulations (DNS), from the laminar to fully turbulent state. The ...
