Estimation of Model Error Using Bayesian Model-Scenario Averaging with Maximum a Posterori-Estimates
Ouvrage scientifique
Date
2019-07Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureEDELING, Wouter Nico; CINNELLA, Paola; DWIGHT, Richard P.; BIJL, H. (Elsevier, 2014)In this paper we are concerned with obtaining estimates for the error in Reynolds-Averaged Navier-Stokes (RANS) simulations based on the Launder-Sharma k−ε turbulence closure model, for a limited class of flows. In particular ...
-
Article dans une revue avec comité de lectureEDELING, Wouter Nico; DWIGHT, Richard P.; CINNELLA, Paola (Elsevier, 2016)The Simplex-Stochastic Collocation (SSC) method is a robust tool used to propagate uncertain input distributions through a computer code. However, it becomes prohibitively expensive for problems with dimensions higher than ...
-
Article dans une revue avec comité de lectureCINNELLA, Paola; SCHMELZER, Martin; EDELING, Wouter Nico (American Institute of Aeronautics and Astronautics, 2018)Computational fluid dynamics analyses of high-Reynolds-number flows mostly rely on the Reynolds-averaged Navier–Stokes equations. The associated closure models are based on multiple simplifying assumptions and involve ...
-
Communication avec acteSCHMELZER, Martin; DWIGHT, Richard P.; CINNELLA, Paola (American Institute of Aeronautics and Astronautics, 2018)This work presents developments towards a deterministic symbolic regression method to derive algebraic Reynolds-stress models for the Reynolds-Averaged Navier-Stokes (RANS) equations. The models are written as tensor ...
-
Article dans une revue avec comité de lectureEDELING, Wouter Nico; IACCARINO, Gianluca; CINNELLA, Paola (Springer Verlag (Germany), 2017)For the purpose of estimating the epistemic model-form uncertainty in Reynolds-Averaged Navier-Stokes closures, we propose two transport equations to locally perturb the Reynolds stress tensor of a given baseline eddy-viscosity ...