• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning corrections for hyperelastic models from data

Article dans une revue avec comité de lecture
Auteur
GONZÁLEZ, David
95355 Universidad de Zaragoza = University of Zaragoza [Saragossa University] = Université de Saragosse
ccCUETO, Elias
95355 Universidad de Zaragoza = University of Zaragoza [Saragossa University] = Université de Saragosse
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/15682
DOI
10.3389/fmats.2019.00014
Date
2019
Journal
Frontiers in Materials

Résumé

Unveiling physical laws from data is seen as the ultimate sign of human intelligence. While there is a growing interest in this sense around the machine learning community, some recent works have attempted to simply substitute physical laws by data. We believe that getting rid of centuries of scientific knowledge is simply nonsense. There are models whose validity and usefulness is out of any doubt, so try to substitute them by data seems to be a waste of knowledge. While it is true that fitting well-known physical laws to experimental data is sometimes a painful process, a good theory continues to be practical and provide useful insights to interpret the phenomena taking place. That is why we present here a method to construct, based on data, automatic corrections to existing models. Emphasis is put in the correct thermodynamic character of these corrections, so as to avoid violations of first principles such as the laws of thermodynamics. These corrections are sought under the umbrella of the GENERIC framework (Grmela and Oettinger, 1997), a generalization of Hamiltonian mechanics to non-equilibrium thermodynamics. This framework ensures the satisfaction of the first and second laws of thermodynamics, while providing a very appealing context for the proposed automated correction of existing laws. In this work we focus on solid mechanics, particularly large strain (visco-)hyperelasticity.

Fichier(s) constituant cette publication

Nom:
PIMM_FIM_2019_CHINESTA.pdf
Taille:
3.278Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • A Data-Driven Learning Method for Constitutive Modeling: Application to Vascular Hyperelastic Soft Tissues 
    Article dans une revue avec comité de lecture
    GONZÁLEZ, David; GARCÍA-GONZÁLEZ, Alberto; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (MDPI, 2020)
    We address the problem of machine learning of constitutive laws when large experimental deviations are present. This is particularly important in soft living tissue modeling, for instance, where large patient-dependent ...
  • Learning non-Markovian physics from data 
    Article dans une revue avec comité de lecture
    GONZÁLEZ, David; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (Elsevier, 2021)
    We present a method for the data-driven learning of physical phenomena whose evolution in time depends on history terms. It is well known that a Mori-Zwanzig-type projection produces a description of the physical phenomena ...
  • Learning data-driven reduced elastic and inelastic models of spot-welded patches 
    Article dans une revue avec comité de lecture
    REILLE, Agathe; CHAMPANEY, Victor; DAIM, Fatima; TOURBIER, Yves; HASCOET, Nicolas; GONZALEZ, David; ccCUETO, Elias; DUVAL, Jean Louis; ccCHINESTA SORIA, Francisco (EDP Sciences, 2021)
    Solving mechanical problems in large structures with rich localized behaviors remains a challenging issue despite the enormous advances in numerical procedures and computational performance. In particular, these localized ...
  • Structure-preserving neural networks 
    Article dans une revue avec comité de lecture
    HERNÁNDEZ, Quercus; BADÍAS, Alberto; GONZÁLEZ, David; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (Elsevier, 2021)
    We develop a method to learn physical systems from data that employs feedforward neural networks and whose predictions comply with the first and second principles of thermodynamics. The method employs a minimum amount of ...
  • Towards a high-resolution numerical strategy based on separated representations 
    Article dans une revue avec comité de lecture
    ccCUETO, Elias; GONZALEZ, David; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (Springer Link, 2008)
    Many models in Science and Engineering are defined in spaces (the so-called conformation spaces) of high dimensionality. In kinetic theory, for instance, the micro scale of a fluid evolves in a space whose number of ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales