Subject specific hexahedral Finite Element mesh generation of the pelvis from bi-Planar X-ray images
Communication avec acte
Auteur
ROHAN, Pierre-Yves
69111 Institut Fédératif de Recherche en Sciences et Ingénierie de la Santé [IFRESIS]
109989 Département Biomécanique et Biomatériaux [DB2M-ENSMSE]
175453 Arts et Métiers ParisTech
176079 UMR 5146 - Laboratoire Claude Goux [LCG-ENSMSE]
209645 Surfaces et Tissus Biologiques [STBio-ENSMSE]
209650 Laboratoire Georges Friedel [LGF-ENSMSE]
388249 Gestes Medico-chirurgicaux Assistés par Ordinateur [TIMC-IMAG-GMCAO]
466360 Institut de Biomecanique Humaine Georges Charpak
22135 Centre Ingénierie et Santé [CIS-ENSMSE]
69111 Institut Fédératif de Recherche en Sciences et Ingénierie de la Santé [IFRESIS]
109989 Département Biomécanique et Biomatériaux [DB2M-ENSMSE]
175453 Arts et Métiers ParisTech
176079 UMR 5146 - Laboratoire Claude Goux [LCG-ENSMSE]
209645 Surfaces et Tissus Biologiques [STBio-ENSMSE]
209650 Laboratoire Georges Friedel [LGF-ENSMSE]
388249 Gestes Medico-chirurgicaux Assistés par Ordinateur [TIMC-IMAG-GMCAO]
466360 Institut de Biomecanique Humaine Georges Charpak
22135 Centre Ingénierie et Santé [CIS-ENSMSE]
Résumé
Several Finite Element (FE) models of the pelvis have been developed to comprehensively assess the onset of pathologies and for clinical and industrial applications. However, because of the difficulties associated with the creation of subject-specific FE mesh from CT scan and MR images, most of the existing models rely on the data of one given individual. Moreover, although several fast and robust methods have been developed for automatically generating tetrahedral meshes of arbitrary geometries, hexahedral meshes are still preferred today because of their distinct advantages but their generation remains an open challenge. Recently, approaches have been proposed for fast 3D reconstruction of bones based on X-ray imaging. In this study, we adapted such an approach for the fast and automatic generation of all-hexahedral subject-specific FE models of the pelvis based on the elastic registration of a generic mesh to the subject-specific target in conjunction with element regularity and quality correction. A full hexahedral subject-specific FE mesh was generated with an accurate surface representation.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureFOUGERON, Nolwenn; MACRON, Aurélien; TRAVERT, Christophe; SKALLI, Wafa; ROHAN, Pierre-Yves; PILLET, Helene (Taylor & Francis, 2018)Several Finite Element (FE) models of the pelvis have been developed to comprehensively assess the onset of pathologies and for clinical and industrial applications. However, because of the difficulties associated with the ...
-
Chapitre d'ouvrage scientifiqueBERRIOT, Audrey; FOUGERON, Nolwenn; BONNET, Xavier; ROHAN, Pierre-Yves; PILLET, Helene (Springer International Publishing, 2021)The proper management of the local mechanical environment within soft tissues is a key challenge central the prevention of Pressure Ulcers (PUs). Magnetic Resonance (MR) imaging is the preferred imaging modality to measure ...
-
Article dans une revue avec comité de lectureFOUGERON, Nolwenn; ROSE, Jean-Loïc; BONNET, Xavier; ROHAN, Pierre-Yves; PILLET, Helene (Elsevier BV, 2022-07)The role of the above-knee socket is to ensure the load transfer via the coupling of residual limb-prosthesis with minimal discomfort and without damaging the soft tissues. Modelling is a potential tool to predict socket ...
-
Communication sans acteProsthetic sockets are custom-designed and are decisive for functionality and comfort of limb prosthesis. To ensure load transmission and stability, high interface stresses are applied. Several computer models of the ...
-
Article dans une revue avec comité de lectureFOUGERON, Nolwenn; HEARING, Diane; ROSE, Jean-Loïc; BONNET, Xavier; ROHAN, Pierre-Yves; PILLET, Helene (American Society of Mechanical Engineers, 2020)Finite Element Analysis (FEA) is a numerical modelling tool vastly employed in research facilities to analyse and predict load transmission between the human body and a medical device, such as a prosthesis or an exoskeleton. ...