A subject-specific biomechanical control model for the prediction of cervical spine muscle forces
Article dans une revue avec comité de lecture
Date
2018Journal
Clinical BiomechanicsAbstract
Background: The aim of the present study is to propose a subject-specific biomechanical control model for the estimation of active cervical spine muscle forces. Methods: The proprioception-based regulation model developed by Pomero et al. (2004) for the lumbar spine was adapted to the cervical spine. The model assumption is that the control strategy drives muscular activation to maintain the spinal joint load below the physiological threshold, thus avoiding excessive intervertebral displacements. Model evaluation was based on the comparison with the results of two reference studies. The effect of the uncertainty on the main model input parameters on the predicted force pattern was assessed. The feasibility of building this subject-specific model was illustrated with a case study of one subject. Findings: The model muscle force predictions, although independent from EMG recordings, were consistent with the available literature, with mean differences of 20%. Spinal loads generally remained below the physiological thresholds. Moreover, the model behavior was found robust against the uncertainty on the muscle orientation, with a maximum coefficient of variation (CV) of 10%. Interpretation: After full validation, this model should offer a relevant and efficient tool for the biomechanical and clinical study of the cervical spine, which might improve the understanding of cervical spine disorders.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureMUTH-SENG, Christophe; BRAUGE, David; SORIAU, N.; SANDOZ, Baptiste; VAN DEN ABBEELE, M.; SKALLI, Wafa; LAPORTE, Sébastien (Elsevier, 2019)Cervical traumas are among the most common events leading to serious spinal cord injuries. While models are often used to better understand injury mechanisms, experimental data for their validation remain sparse, particularly ...
-
Spine Chapitre d'ouvrage scientifiqueVAN DEN ABBEELE, Maxim; ADAM, Clayton; SKALLI, Wafa; LAPORTE, Sébastien; ROUCH, Philippe; ROHAN, Pierre-Yves (Elsevier, 2017)Clinical problems of the human spine have a high prevalence, affecting more than 25.5 million people in 2012. Older adults, in particular, are susceptible to degenerative spine disorders such as deformities or osteoporosis. ...
-
Article dans une revue avec comité de lecturePurpose To quantify the cervical muscle volume variation by means of three‐dimensional reconstruction from MRI images. Materials and Methods Sixteen subjects were scanned using a Philips MRI scanner, including 11 men and ...
-
Article dans une revue avec comité de lectureVAN DEN ABBEELE, Maxim; VALIADIS, Jean-Marc; LIMA, Lucas Venancio; KHALIFE, Pascal; SKALLI, Wafa; ROUCH, Philippe (Taylor & Francis, 2017)Although the use of pedicle screws is considered safe, mechanical issues still often occur. Commonly reported issues are screw loosening, screw bending and screw fracture. The aim of this study was to develop a Finite ...
-
Article dans une revue avec comité de lectureMOREAU, Baptiste; GAD, Hisham; SANDOZ, Baptiste; SKALLI, Wafa; LAPORTE, Sébastien; VERGARI, Claudio (SAGE Publications, 2016)INTRODUCTION: There is a lack of numeric data for the mechanical characterization of spine muscles, especially in vivo data. The multifidus muscle is a major muscle for the stabilization of the spine and may be involved ...