A Multidimensional Data-Driven Sparse Identification Technique: The Sparse Proper Generalized Decomposition
Article dans une revue avec comité de lecture
Résumé
Sparse model identification by means of data is especially cumbersome if the sought dynamics live in a high dimensional space. This usually involves the need for large amount of data, unfeasible in such a high dimensional settings. This well-known phenomenon, coined as the curse of dimensionality, is here overcome by means of the use of separate representations. We present a technique based on the same principles of the Proper Generalized Decomposition that enables the identification of complex laws in the low-data limit. We provide examples on the performance of the technique in up to ten dimensions.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureCUETO, Elías G.; DUVAL, Jean-Louis; IBAÑEZ, Ruben; ABISSET-CHAVANNE, Emmanuelle; AMMAR, Amine; CHINESTA SORIA, Francisco (Springer Verlag, 2019)Compressed sensing is a signal compression technique with very remarkable properties. Among them, maybe the most salient one is its ability of overcoming the Shannon–Nyquist sampling theorem. In other words, it is able to ...
-
Article dans une revue avec comité de lectureIBÁÑEZ, Rubén; GONZÁLEZ, David; DUVAL, Jean Louis; CUETO, Elias; ABISSET-CHAVANNE, Emmanuelle; CHINESTA SORIA, Francisco (Springer Verlag, 2019)In recent times a growing interest has arose on the development of data-driven techniques to avoid the employ of phenomenological constitutive models. While it is true that, in general, data do not fit perfectly to existing ...
-
Article dans une revue avec comité de lectureIBÁÑEZ PINILLO, Rubén; CUETO, Elias; HUERTA, Antonio; DUVAL, Jean-Louis; AMMAR, Amine; CHINESTA SORIA, Francisco (Wiley, 2019)Solutions of partial differential equations could exhibit a multiscale behavior. Standard discretization techniques are constraints to mesh up to the finest scale to predict accurately the response of the system. The ...
-
Article dans une revue avec comité de lectureGHNATIOS, Chady; ABISSET-CHAVANNE, Emmanuelle; AMMAR, Amine; CUETOS, Elias; DUVAL, Jean-Louis; CHINESTA SORIA, Francisco (Elsevier, 2019)This work aims at proposing a new procedure for parametric problems whose separated representation has been considered difficult, or whose SVD compression impacted the results in terms of performance and accuracy. The ...
-
Article dans une revue avec comité de lectureIBAÑEZ, Ruben; HUERTA, Antonio; CUETO, Elías G.; ABISSET-CHAVANNE, Emmanuelle; CHINESTA SORIA, Francisco (Wiley, 2019)It is well known that model order reduction techniques that project the solution of the problem at hand onto a low-dimensional subspace present difficulties when this solution lies on a nonlinear manifold. To overcome these ...