• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dissipative solitons in forced cyclic and symmetric structures

Article dans une revue avec comité de lecture
Auteur
HOFFMANN, N.
FONTANELA, Francesco
235079 Department of Mechanical Engineering [Imperial College London]
GROLET, Aurélien
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
SALLES, Loïc
235079 Department of Mechanical Engineering [Imperial College London]
CHABCHOUB, Amin
16230 School of Civil and Environmental Engineering [Sydney]
CHAMPNEYS, Alan
220993 Faculty of Engineering [Bristol]
PATSIAS, Sophoclis
498766 Rolls Royce PLC
HOFFMANN, Norbert
235079 Department of Mechanical Engineering [Imperial College London]
484412 Hamburg University of Technology [TUHH]

URI
http://hdl.handle.net/10985/16778
DOI
10.1016/j.ymssp.2018.08.011
Date
2019
Journal
Mechanical Systems and Signal Processing

Résumé

The emergence of localised vibrations in cyclic and symmetric rotating struc-tures, such as bladed disks of aircraft engines, has challenged engineers in thepast few decades. In the linear regime, localised states may arise due to alack of symmetry, as for example induced by inhomogeneities. However, whenstructures deviate from the linear behaviour, e.g. due to material nonlinearities,geometric nonlinearities like large deformations, or other nonlinear elements likejoints or friction interfaces, localised states may arise even in perfectly symmet-ric structures. In this paper, a system consisting of coupled Duffing oscillatorswith linear viscous damping is subjected to external travelling wave forcing.The system may be considered a minimal model for bladed disks in turboma-chinery operating in the nonlinear regime, where such excitation may arise dueto imbalance or aerodynamic excitation. We demonstrate that near the reso-nance, in this non-conservative regime, localised vibration states bifurcate fromthe travelling waves. Complex bifurcation diagrams result, comprising stableand unstable dissipative solitons. The localised solutions can also be continuednumerically to a conservative limit, where solitons bifurcate from the backbonecurves of the travelling waves at finite amplitudes.

Fichier(s) constituant cette publication

Nom:
LISPEN_MSSP_2019_GROLET.pdf
Taille:
1.453Mo
Format:
PDF
Description:
post refering version
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Computation of quasi-periodic localised vibrations in nonlinear cyclic and symmetric structures using harmonic balance methods 
    Article dans une revue avec comité de lecture
    FONTANELA, Filipe; GROLET, Aurélien; SALLES, Loïc; HOFFMANN, Norbert (Elsevier, 2019)
    In this paper we develop a fully numerical approach to compute quasi-periodic vibrations bifurcating from nonlinear periodic states in cyclic and symmetric structures. The focus is on localised oscillations arising from ...
  • Non-intrusive reduced order modelling for the dynamics of geometrically nonlinear flat structures using three-dimensional finite elements 
    Article dans une revue avec comité de lecture
    VIZZACCARO, Alessandra; GIVOIS, Arthur; LONGOBARDI, Pierluigi; ccSHEN, Yichang; DEÜ, Jean-François; SALLES, Loïc; ccTOUZÉ, Cyril; ccTHOMAS, Olivier (Springer Verlag, 2020)
    Non-intrusive methods have been used since two decades to derive reduced-order models for geometrically nonlinear structures, with a particular emphasis on the so-called STiffness Evaluation Procedure (STEP), relying on ...
  • Comparison of Reduction Methods for Finite Element Geometrically Nonlinear Beam Structures 
    Article dans une revue avec comité de lecture
    ccSHEN, Yichang; VIZZACCARO, Alessandra; KESMIA, Nassim; SALLES, Loïc; ccTHOMAS, Olivier; ccTOUZÉ, Cyril (MDPI AG, 2021-03)
    The aim of this contribution is to present numerical comparisons of model-order reduction methods for geometrically nonlinear structures in the general framework of finite element (FE) procedures. Three different methods ...
  • Reduced-order modeling of geometrically nonlinear rotating structures using the direct parametrisation of invariant manifolds 
    Article dans une revue avec comité de lecture
    MARTIN, Adrien; OPRENI, Andrea; ccVIZZACCARO, Alessandra; ccDEBEURRE, Marielle; SALLES, Loic; FRANGI, Attilio; ccTHOMAS, Olivier; TOUZÉ, Cyril (Centre pour la Communication Scientifique Directe (CCSD), 2023-06)
    The direct parametrisation method for invariant manifolds is a nonlinear reduction technique which derives nonlinear mappings and reduced-order dynamics that describe the evolution of dynamical systems along a low-dimensional ...
  • Comparison of ANM and Predictor-Corrector Method to Continue Solutions of Harmonic Balance Equations 
    Article dans une revue avec comité de lecture
    WOIWODE, Lukas; BALAJI, Nidish Narayanaa; KAPPAUF, Jonas; TUBITA, Fabia; GUILLOT, Louis; VERGEZ, Christophe; COCHELIN, Bruno; GROLET, Aurélien; KRACK, Malte (Springer International Publishing, 2019)
    In this work we apply and compare two numerical path continuation algorithms for solving algebraic equations arising when applying the Harmonic Balance Method to compute periodic regimes of nonlinear dynamical systems. The ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales