• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hybrid constitutive modeling: data-driven learning of corrections to plasticity models

Article dans une revue avec comité de lecture
Auteur
IBÁÑEZ, Rubén
GONZÁLEZ, David
95355 Universidad de Zaragoza = University of Zaragoza [Saragossa University] = Université de Saragosse
DUVAL, Jean Louis
ccCUETO, Elias
95355 Universidad de Zaragoza = University of Zaragoza [Saragossa University] = Université de Saragosse
ccABISSET-CHAVANNE, Emmanuelle
58355 École Nationale Supérieure des Arts et Métiers [ENSAM]
564849 ESI Group [ESI Group]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/17438
DOI
10.1007/s12289-018-1448-x
Date
2019
Journal
International Journal of Material Forming

Résumé

In recent times a growing interest has arose on the development of data-driven techniques to avoid the employ of phenomenological constitutive models. While it is true that, in general, data do not fit perfectly to existing models, and present deviations from the most popular ones, we believe that this does not justify (or, at least, not always) to abandon completely all the acquired knowledge on the constitutive characterization of materials. Instead, what we propose here is, by means of machine learning techniques, to develop correction to those popular models so as to minimize the errors in constitutive modeling.

Fichier(s) constituant cette publication

Nom:
PIMM_IJMF_2019_CHINESTA 2.pdf
Taille:
2.036Mo
Format:
PDF
Fin d'embargo:
2020-02-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • A Multidimensional Data-Driven Sparse Identification Technique: The Sparse Proper Generalized Decomposition 
    Article dans une revue avec comité de lecture
    IBAÑEZ, Ruben; ccABISSET-CHAVANNE, Emmanuelle; ccAMMAR, Amine; GONZALEZ, David; ccCUETO, Elias; HUERTA, Antonio; DUVAL, Jean-Louis; ccCHINESTA SORIA, Francisco (Wiley, 2018)
    Sparse model identification by means of data is especially cumbersome if the sought dynamics live in a high dimensional space. This usually involves the need for large amount of data, unfeasible in such a high dimensional ...
  • Some applications of compressed sensing in computational mechanics: model order reduction, manifold learning, data-driven applications and nonlinear dimensionality reduction 
    Article dans une revue avec comité de lecture
    ccCUETO, Elias; DUVAL, Jean-Louis; IBAÑEZ, Ruben; ccABISSET-CHAVANNE, Emmanuelle; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (Springer Verlag, 2019)
    Compressed sensing is a signal compression technique with very remarkable properties. Among them, maybe the most salient one is its ability of overcoming the Shannon–Nyquist sampling theorem. In other words, it is able to ...
  • Advanced separated spatial representations for hardly separable domains 
    Article dans une revue avec comité de lecture
    GHNATIOS, Chady; ccABISSET-CHAVANNE, Emmanuelle; ccAMMAR, Amine; ccCUETO, Elias; ccDUVAL, Jean-Louis; ccCHINESTA SORIA, Francisco (Elsevier, 2019)
    This work aims at proposing a new procedure for parametric problems whose separated representation has been considered difficult, or whose SVD compression impacted the results in terms of performance and accuracy. The ...
  • Virtual, Digital and Hybrid Twins: A New Paradigm in Data-Based Engineering and Engineered Data 
    Article dans une revue avec comité de lecture
    ccCUETO, Elias; DUVAL, Jean Louis; KHALDI, Fouad El; ccABISSET-CHAVANNE, Emmanuelle; ccCHINESTA SORIA, Francisco (Springer Verlag, 2018)
    Engineering is evolving in the same way than society is doing. Nowadays, data is acquiring a prominence never imagined. In the past, in the domain of materials, processes and structures, testing machines allowed extract ...
  • A local multiple proper generalized decomposition based on the partition of unity 
    Article dans une revue avec comité de lecture
    IBAÑEZ, Ruben; HUERTA, Antonio; ccCUETO, Elias; ccABISSET-CHAVANNE, Emmanuelle; ccCHINESTA SORIA, Francisco (Wiley, 2019)
    It is well known that model order reduction techniques that project the solution of the problem at hand onto a low-dimensional subspace present difficulties when this solution lies on a nonlinear manifold. To overcome these ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales