The discriminant role of mechanics during cell migration
Article dans une revue avec comité de lecture
Date
2018Journal
Journal of Cellular ImmunotherapyRésumé
Cell migration is a fundamental process involved in many mechanobiological phenomena such immune response, bone remodelling and tumorogenesis. During the last decades several numerical works have been proposed in the literature in order to unveil its main biological, chemical and mechanical principles. Here, I will show how a computational approach purely based on mechanics is able to reproduce cell migration in different configurations including migration under confinement, in presence of durotaxis and on flat substrates. A series of models will be presented each of which is based on three main ingredients: i) the active strains of the cell reproducing the cyclic protrusion-contraction movement of the cell (i.e. the polymerization and depolymerization processes), ii) the adhesion forces exerted by the cell on the surrounding and ii) the intra-synchronization between the active strains and the adhesion forces. I will show how mechanics play a critical role in determining the efficiency of the cell in terms of displacement, speed and forces.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureBENDAYA, Samy; LAZENNEC, Jean-Yves; ANGLIN, Carolyn; ALLENA, Rachele; SELLAM, N.; THOUMIE, P.; SKALLI, Wafa (Elsevier, 2015)Osteoarthritis is a debilitating disease, for which the development path is unknown. Hip, pelvis and femoral morphological and positional parameters relate either to individual differences or to changes in the disease ...
-
Article dans une revue avec comité de lectureSCHMITT, M.; ALLENA, Rachele; SCHOUMAN, T.; FRASCA, S.; COLLOMBET, J.M.; HOLY, X.; ROUCH, Philippe (Taylor & Francis, 2015)In this study, we develop a two-dimensional finite element model, which is derived from an animal experiment and allows simulating osteogenesis within a porous titanium scaffold implanted in ewe's hemi-mandible during 12 ...
-
Article dans une revue avec comité de lectureAUBRY, Denis; GUPTA, M.; LADOUX, B.; ALLENA, Rachele (Institute of Physics: Hybrid Open Access, 2015)Cell migration, a fundamental mechanobiological process, is highly sensitive to the biochemical and mechanical properties of the environment. Efficient cell migration is ensured by the intrinsic polarity of the cell, which ...
-
Article dans une revue avec comité de lectureALLENA, Rachele; AUBRY, Denis; SHARPE, James (Springer Verlag, 2013)Collective cell migration is a fundamental process that takes place during several biological phenomena such as embryogenesis, immunity response, and tumorogenesis, but the mechanisms that regulate it are still unclear. ...
-
Article dans une revue avec comité de lectureSuccessfully simulating tissue evolution in bone is of significant importance in predicting various biological processes such as bone remodeling, fracture healing and osseointegration of implants. Each of these processes ...