• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • Voir le document
  • Accueil de SAM
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

In silico approach to quantify nucleus self‑deformation on micropillared substrates

Article dans une revue avec comité de lecture
Auteur
MONDESERT-DEVERAUX, Solenne
1332 Laboratoire de mécanique des sols, structures et matériaux [MSSMat]
ALLENA, Rachele
466360 Institut de Biomecanique Humaine Georges Charpak
AUBRY, Denis
1332 Laboratoire de mécanique des sols, structures et matériaux [MSSMat]

URI
http://hdl.handle.net/10985/17461
DOI
10.1007/s10237-019-01144-2
Date
2019
Journal
Biomechanics and Modeling in Mechanobiology

Résumé

Considering the major role of confined cell migration in biological processes and diseases, such as embryogenesis or metastatic cancer, it has become increasingly important to design relevant experimental set-ups for in vitro studies. Microfluidic devices have recently presented great opportunities in their respect since they offer the possibility to study all the steps from a suspended to a spread, and eventually crawling cell or a cell with highly deformed nucleus. Here, we focus on the nucleus self-deformation over a micropillared substrate. Actin networks have been observed at two locations in this set-up: above the nucleus, forming the perinuclear actin cap (PAC), and below the nucleus, surrounding the pillars. We can then wonder which of these contractile networks is responsible for nuclear deformation. The cytoplasm and the nucleus are represented through the superposition of a viscous and a hyperelastic material and follow a series of processes. First, the suspended cell settles on the pillars due to gravity. Second, an adhesive spreading force comes into play, and then, active deformations contract one or both actin domains and consequently the nucleus. Our model is first tested on a flat substrate to validate its global behaviour before being confronted to a micropillared substrate. Overall, the nucleus appears to be mostly pulled towards the pillars, while the mechanical action of the PAC is weak. Eventually, we test the influence of gravity and prove that the gravitational force does not play a role in the final deformation of the nucleus.

Fichier(s) constituant cette publication

Nom:
IBHGC_BMM_2019_ALLENA.pdf
Taille:
2.769Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells 
    Article dans une revue avec comité de lecture
    DAVIDSON, Patricia M; FEDORCHAK, Gregory R; MONDESERT-DEVERAUX, Solenne; BELL, Emily S; ISERMANN, Philipp; AUBRY, Denis; ALLENA, Rachele; LAMMERDING, Jan (Royal Society of Chemistry, 2019)
    The mechanical properties of the cell nucleus are increasingly recognized as critical in many biological processes. The deformability of the nucleus determines the ability of immune and cancer cells to migrate through ...
  • A Coupled Friction-Poroelasticity Model of Chimneying Shows that Confined Cells Can Mechanically Migrate Without Adhesions 
    Article dans une revue avec comité de lecture
    MONDESERT-DEVERAUX, Solenne; ALLENA, Rachele; AUBRY, Denis (Tech Science Press, 2018)
    Cell migration is the cornerstone of many biological phenomena such as cancer metastasis, immune response or organogenesis. Adhesion-based motility is the most renown and examined motility mode, but in an adhesion-free ...
  • A numerical model suggests the interplay between nuclear plasticity and stiffness during a perfusion assay 
    Article dans une revue avec comité de lecture
    DEVERAUX, Solenne; ALLENA, Rachele; AUBRY, Denis (Elsevier, 2017)
    Cell deformability is a necessary condition for a cell to be able to migrate, an ability that is vital both for healthy and diseased organisms. The nucleus being the largest and stiffest organelle, it often is a barrier ...
  • Viscoelastoplastic model of cell nucleus under compression 
    Communication avec acte
    DEVERAUX, Solenne; ALLENA, Rachele; AUBRY, Denis (Informa UK Limited, 2015)
    Short abstract
  • High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells 
    Article dans une revue avec comité de lecture
    FEDORCHAK, Gregory; MONDÉSERT-DEVERAUX, Solenne; BELL, Emily; ISERMANN, Philipp; AUBRY, Denis; ALLENA, Rachele; LAMMERDING, Jan (Royal Society of Chemistry, 2019)
    The mechanical properties of the cell nucleus are increasingly recognized as critical in many biological processes. The deformability of the nucleus determines the ability of immune and cancer cells to migrate through ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales