Recent advances in drilling hybrid FRP/Ti composite: A state-of-the-art review
Article dans une revue avec comité de lecture
Date
2016Journal
Composite StructuresAbstract
Hybrid composite stack, especially FRP/Ti assembly, is considered as an innovative structural configuration for manufacturing the key load-bearing components favoring energy saving in the aerospace industry. Several applications require mechanical drilling for finishing hybrid composite structures. The drilling operation of hybrid FRP/Ti composite, however, represents the most challenging task in modern manufacturing sectors due to the disparate natures of each constituent involved and the complexity to control tool–material interfaces during one single cutting shot. Special issues may arise from the severe subsurface damage, excessive interface consumption, rapid tool wear, etc. In this paper, a rigorous review concerning the state-of-the-art results and advances on drilling solutions of hybrid FRP/Ti composite was presented by referring to the wide comparisons among literature analyses. The multiple aspects of cutting responses and physical phenomena generated when drilling these materials were precisely addressed. A special focus was made on the material removal modes and tool wear mechanisms dominating the bi-material interface consumption (BIC) with respect of investigating strategies used. The key conclusions from the literature review were drawn to point out the potential solutions and limitations to be necessarily overcome for reaching both (i) enhanced control of drilling operation, and (ii) better finish quality of FRP/Ti parts
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureThis paper addresses the effects of bonds and grains of abrasive tools on the edge aspect of ground glass surface. Diamond grains and silicon carbide (SiC) grains combined with two bond types, i.e., resin and metal, were ...
-
Article dans une revue avec comité de lectureThis work addresses the tribological reliability of TiAlN-based PVD coatings face to TiN-based CVD coating in cutting FRP. Wear and linear pin-on-plate tests were conducted on both glass/epoxy and carbon/epoxy composites ...
-
Article dans une revue avec comité de lectureThe enhanced mechanical/physical properties and improved functionalities have made the carbon fiber–reinforced polymer/titanium alloy (CFRP/Ti6Al4V) stacks very attractive to the modern aerospace industry. However, the ...
-
Article dans une revue avec comité de lectureMachining of high-strength carbon fiber reinforced polymers (CFRPs) has faced great challenges in quality control and tool wear management due to their inherent heterogeneity and high abrasiveness leading to serious workpiece ...
-
Article dans une revue avec comité de lectureIn hybrid carbon fiber reinforced polymer (CFRP)/Ti machining, the bi-material interface is the weakest region vulnerable to severe damage formation when the tool cutting from one phase to another phase and vice versa. The ...