Numerical investigation of the interaction between laminar to turbulent transition and the wake of an airfoil
Article dans une revue avec comité de lecture
Date
2016Journal
European Journal of Mechanics - B/FluidsRésumé
The objective of this work is to investigate numerically the different physical mechanisms of the transition to turbulence of a separated boundary-layer flow over an airfoil at low angle of attack. In this study, the spectral elements code Nek5000 is used to simulate the flow over a SD7003 wing section at an angle of attack of α = 4 ◦ . Several laminar cases are first studied from Re = 2000 to Re = 10000, and a gradual increase of the Reynolds number is then performed in order to investigate one transitional case at Re = 20000. Computations are compared with measurements where the instability mechanisms in the separated zone and near wake zone have been analyzed. The mechanism of transition is investigated, where the DMD (Dynamic Mode Decomposition) is used in order to extract the main physical modes of the flow and to highlight the interaction between the transition and the wake flow. The results suggest that the transition process appears to be physically independent of the wake flow, while the LSB shedding process is locked-in with the von Kármán instability and acts as a sub-harmonic.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureCHERUBINI, Stefania; LERICHE, Emmanuel; ROBINET, Jean-Christophe; LOISEAU, Jean-Christophe (Elsevier, 2015)The linear global instability and resulting transition to turbulence induced by a cylindrical roughness element of heighth and diameter d=3h immersed within an incompressible boundary layer flow along a flat plate is ...
-
Ouvrage scientifiqueCHERUBINI, Stefania; LERICHE, Emmanuel; ROBINET, Jean-Christophe; LOISEAU, Jean-Christophe (Springer, 2015)lobal instability analysis of the three-dimensional flow past two rough- ness elements of different shape, namely a cylinder and a bump, is presented. In both cases, the eigenspectrum is made of modes characterised by a ...
-
Article dans une revue avec comité de lectureBENGANA, Y.; TUCKERMAN, L. S.; ROBINET, Jean-Christophe; LOISEAU, Jean-Christophe (Cambridge University Press (CUP), 2019)A comprehensive study of the two-dimensional incompressible shear-driven flow in an open square cavity is carried out. Two successive bifurcations lead to two limit cycles with different frequencies and different numbers ...
-
Article dans une revue avec comité de lectureCHERUBINI, Stefania; LERICHE, Emmanuel; ROBINET, Jean-Christophe; LOISEAU, Jean-Christophe (Cambridge University Press (CUP), 2014)The linear global instability and resulting transition to turbulence induced by an isolated cylindrical roughness element of height h and diameter d immersed within an incompressible boundary layer flow along a flat plate ...
-
Article dans une revue avec comité de lecturePICELLA, Francesco; LUSSEYRAN, F; CHERUBINI, Stefania; PASTUR, L; ROBINET, Jean-Christophe; LOISEAU, Jean-Christophe (Cambridge University Press (CUP), 2018)The transition to unsteadiness of a three-dimensional open cavity flow is investigated using the joint application of direct numerical simulations and fully three-dimensional linear stability analyses, providing a clear ...