Sparse reduced-order modelling: sensor-based dynamics to full-state estimation
Article dans une revue avec comité de lecture
Date
2018Journal
Journal of Fluid MechanicsRésumé
We propose a general dynamic reduced-order modelling framework for typical experimental data: time-resolved sensor data and optional non-time-resolved particle image velocimetry (PIV) snapshots. This framework can be decomposed into four building blocks. First, the sensor signals are lifted to a dynamic feature space without false neighbours. Second, we identify a sparse human-interpretable nonlinear dynamical system for the feature state based on the sparse identification of nonlinear dynamics (SINDy). Third, if PIV snapshots are available, a local linear mapping from the feature state to the velocity field is performed to reconstruct the full state of the system. Fourth, a generalized feature-based modal decomposition identifies coherent structures that are most dynamically correlated with the linear and nonlinear interaction terms in the sparse model, adding interpretability. Steps 1 and 2 define a black-box model. Optional steps 3 and 4 lift the black-box dynamics to a grey-box model in terms of the identified coherent structures, if non-time-resolved full-state data are available. This grey-box modelling strategy is successfully applied to the transient and post-transient laminar cylinder wake, and compares favourably with a proper orthogonal decomposition model. We foresee numerous applications of this highly flexible modelling strategy, including estimation, prediction and control. Moreover, the feature space may be based on intrinsic coordinates, which are unaffected by a key challenge of modal expansion: the slow change of low-dimensional coherent structures with changing geometry and varying parameters.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Chapitre d'ouvrage scientifiqueReduced-order models are essential for the accurate and efficient prediction, estimation, and control of complex systems. This is especially true in fluid dynamics, where the fully resolved state space may easily contain ...
-
Article dans une revue avec comité de lectureThe sparse identification of nonlinear dynamics (SINDy) is a recently proposed data-driven modelling framework that uses sparse regression techniques to identify nonlinear low-order models. With the goal of low-order models ...
-
Article dans une revue avec comité de lectureImproved turbulence modeling remains a major open problem in mathematical physics. Turbulence is notoriously challenging, in part due to its multiscale nature and the fact that large-scale coherent structures cannot be ...
-
Article dans une revue avec comité de lectureKAPTANOGLU, Alan; DE SILVA, Brian; FASEL, Urban; KAHEMAN, Kadierdan; GOLDSCHMIDT, Andy; CALLAHAM, Jared; DELAHUNT, Charles; NICOLAOU, Zachary; CHAMPION, Kathleen; KUTZ, J.; BRUNTON, Steven; LOISEAU, Jean-Christophe (The Open Journal, 2022-01)Automated data-driven modeling, the process of directly discovering the governing equations of a system from data, is increasingly being used across the scientific community. PySINDy is a Python package that provides tools ...
-
Article dans une revue avec comité de lectureDE SILVA, Brian; CHAMPION, Kathleen; QUADE, Markus; KUTZ, J. Nathan; BRUNTON, Steven; LOISEAU, Jean-Christophe (Open Journals, 2020)Scientists have long quantified empirical observations by developing mathematical models that characterize the observations, have some measure of interpretability, and are capable of making predictions. Dynamical systems ...