Understanding the material flow path of friction stir welding process using unthreaded tools
Article dans une revue avec comité de lecture
Auteur
LORRAIN, Olivier
300413 Ecole Nationale Supérieure des Arts et Metiers Metz
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
300413 Ecole Nationale Supérieure des Arts et Metiers Metz
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
Date
2010Journal
Journal of Materials Processing TechnologyRésumé
Material flow during friction stir welding is very complex and not fully understood. Most of studies in literature used threaded pins since most industrial applications currently use threaded pins. However, initially threaded tools may become unthreaded because of the tool wear when used for high melting point alloys or reinforced aluminium alloys. In this study, FSW experiments were performed using two different pin profiles. Both pins are unthreaded but have or do not have flat faces. The primary goal is to analyse the flow when unthreaded pins are used to weld thin plates. Cross-sections and longitudinal sections of welds were observed with and without the use of material marker (MM) to investigate the material flow. Material flow with unthreaded pin was found to have the same features as material flow using classical threaded pins: material is deposited in the advancing side (AS) in the upper part of the weld and in the retreating side (RS) in the lower part of the weld; a rotating layer appears around the tool. However, the analysis revealed a too low vertical motion towards the bottom of the weld, attributed to the lack of threads. The product of the plunge force and the rotational speed was found to affect the size of the shoulder dominated zone. This effect is reduced using the cylindrical tapered pin with flats.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureFriction stir welding (FSW) is a solid-phase welding process. Material flow during FSW is very complex and not fully understood. Most of studies in literature used threaded pins since most industrial applications currently ...
-
Article dans une revue avec comité de lecturePLANCHER, Emeric; PETIT, Johann; MAURICE, Claire; SAINTOYANT, Lucie; LOISNARD, Dominique; RUPIN, N.; MARIJON, Jean-Baptiste; ULRICH, Olivier; BORNERT, Michel; MICHA, Jean Sébastien; ROBACH, Odile; CASTELNAU, Olivier; FAVIER, Véronique (Society for Experimental Mechanics, 2016)Determining the accuracy of elastic strain measurements in plastically deformed alloys is an experimental challenge. To develop a novel cross-validation procedure, a controlled elasto-plastic strain gradient was created ...
-
Article dans une revue avec comité de lectureJACQUEMAIN, Vincent; CHEULEU, Christophe; RANC, Nicolas; CASTELNAU, Olivier; MICHEL, Vincent; VINCI, Doriana; FAVIER, Véronique; MOCUTA, Cristian; THIAUDIERE, Dominique (Crystallography Journals Online, 2024-01)In the energy production and transportation industries, numerous metallic structures may be subjected to at least several billions of cycles, i.e. loaded in the very high cycle fatigue domain (VHCF). Therefore, to design ...
-
Direct measurement of local constitutive relations, at the micrometre scale, in bulk metallic alloys Article dans une revue avec comité de lecturePLANCHER, E; MAURICE, C; LOISNARD, D; RUPIN, N; MARIJON, Jean-Baptiste; MICHA, Jean-Sébastien; ROBACH, Odile; CASTELNAU, Olivier; BOSSO, E; STODOLNA, J; PETIT, J; FAVIER, Véronique (International Union of Crystallography, 2017)Multiscale models involving crystal plasticity are essential to predict the elastoplastic behavior of structural materials with respect to their microstructure. However, those models are often limited by a poor knowledge ...
-
Article dans une revue avec comité de lectureÖRS, Taylan; PELERIN, Maxime; MICHEL, Vincent; CASTELNAU, Olivier; MOCUTA, Christian; THIAUDIERE, Dominique; RANC, Nicolas; FAVIER, Véronique (International Union of Crystallography, 2019)A new method based on time-resolved X-ray diffraction is proposed in order to measure the elastic strain and stress during ultrasonic fatigue loading experiments. Pure Cu was chosen as an example material for the experiments ...