Learning slosh dynamics by means of data
Article dans une revue avec comité de lecture
Date
2019Journal
Computational MechanicsAbstract
In this work we study several learning strategies for fluid sloshing problems based on data. In essence, a reduced-order model of the dynamics of the free surface motion of the fluid is developed under rigorous thermodynamics settings. This model is extracted from data by exploring several strategies. First, a linear one, based on the employ of Proper Orthogonal Decomposition techniques is analyzed. Second, a strategy based on the employ of Locally Linear Embedding is studied. Finally, Topological Data Analysis is employed to the same end. All the three distinct possibilities rely on a numerical integration scheme to advance the dynamics in time. This thermodynamically consistent integrator is developed on the basis of the General Equation for Non-Equilibrium Reversible–Irreversible Coupling, GENERIC [M. Grmela and H.C Oettinger (1997). Phys. Rev. E. 56 (6): 6620–6632], framework so as to guarantee the satisfaction of first principles (particularly, the laws of thermodynamics). We show how the resulting method employs a few degrees of freedom, while it allows for a realistic reconstruction of the fluid dynamics of sloshing processes under severe real-time constraints. The proposed method is shown to run faster than real time in a standard laptop.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureMOYA, Beatriz; GONZALEZ, David; CUETO, Elías; ALFARO, Icíar; CHINESTA SORIA, Francisco (Public Library of Science, 2020)In this paper, a novel self-learning digital twin strategy is developed for fluid sloshing phenomena. This class of problems is of utmost importance for robotic manipulation of fluids, for instance, or, in general, in ...
-
Article dans une revue avec comité de lectureMOYA, Beatriz; BADÍAS, Alberto; ALFARO, Icíar; CUETO, Elías; CHINESTA SORIA, Francisco (Wiley, 2022-06)Digital twins can be defined as digital representations of physical entities that employ real-time data to enable understanding of the operating conditions of these entities. Here we present a particular type of digital ...
-
Article dans une revue avec comité de lecturePhysics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy to learn the full state of sloshing liquids from measurements ...
-
Article dans une revue avec comité de lectureCHINESTA SORIA, Francisco; LEYGUE, Adrien; BORDEU, Felipe; AGUADO, Jose Vicente; CUETO, Elias; GONZALEZ, David; ALFARO, Icíar; AMMAR, Amine; HUERTA, Antonio (Springer Verlag, 2013)In this paper we are addressing a new paradigm in the field of simulation-based engineering sciences (SBES) to face the challenges posed by current ICT technologies. Despite the impressive progress attained by simulation ...
-
Article dans une revue avec comité de lectureBADIAS, Alberto; GONZALEZ, David; CUETO, Elias; ALFARO, Icíar; CHINESTA SORIA, Francisco (Elsevier, 2018)In this work we explore the possibilities of reduced order modeling for augmented reality applications. We consider parametric reduced order models based upon separate (affine) parametric dependence so as to speedup the ...