Spine
Chapitre d'ouvrage scientifique
Abstract
Clinical problems of the human spine have a high prevalence, affecting more than 25.5 million people in 2012. Older adults, in particular, are susceptible to degenerative spine disorders such as deformities or osteoporosis. A basic requirement for proper management of various spinal disorders, effective injury prevention, and rehabilitation is a detailed knowledge of the fundamental biomechanics of the spine. Despite growing interest in biomechanical research on the spine during the last decades, however, many clinical problems remain largely unsolved, because of poor understanding of the underlying degeneration phenomena and the complexity of the spinal construct. In particular, diagnosis is challenging, because of the lack of tools to quantitatively assess soft tissue alteration, and because the most relevant clinical indices for diagnosis are not clearly established. Driven by ever-growing computer power and imaging devices, the development of FE models has become widespread, allowing scientists to overcome some of the existing shortcomings (invasiveness, complexity of the organization of the biological tissues, and complexity of establishing the loads present in the human spine, for example). These have emerged as powerful and reliable tools with considerable applications in surgery planning, in studying the etiology, progression, and effects of spinal deformities and intervertebral discs. These models have enhanced our understanding of the spine and will continue to do so. In our group, numerical work performed using FE modeling has highlighted the paramount influence of both geometric patient-specific modeling and in vivo personalization of tissue mechanical properties. Among the many exciting avenues for future research is the question of the validation of computational modeling and simulation with the perspective of supporting the development of medical devices.
Files in this item
- Name:
- IBHGC_SPINE_2017_LAPORTE.pdf
- Size:
- 1.166Mb
- Format:
- Description:
- Chapitre d'ouvrage
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureVAN DEN ABBEELE, Maxim; LI, Fan; POMERO, Vincent; BONNEAU, Dominique; SANDOZ, Baptiste; SKALLI, Wafa; LAPORTE, Sébastien (Elsevier, 2018)Background: The aim of the present study is to propose a subject-specific biomechanical control model for the estimation of active cervical spine muscle forces. Methods: The proprioception-based regulation model developed ...
-
Article dans une revue avec comité de lectureVAN DEN ABBEELE, Maxim; VALIADIS, Jean-Marc; LIMA, Lucas Venancio; KHALIFE, Pascal; SKALLI, Wafa; ROUCH, Philippe (Taylor & Francis, 2017)Although the use of pedicle screws is considered safe, mechanical issues still often occur. Commonly reported issues are screw loosening, screw bending and screw fracture. The aim of this study was to develop a Finite ...
-
Article dans une revue avec comité de lectureMUTH-SENG, Christophe; BRAUGE, David; SORIAU, N.; SANDOZ, Baptiste; VAN DEN ABBEELE, M.; SKALLI, Wafa; LAPORTE, Sébastien (Elsevier, 2019)Cervical traumas are among the most common events leading to serious spinal cord injuries. While models are often used to better understand injury mechanisms, experimental data for their validation remain sparse, particularly ...
-
Chapitre d'ouvrage scientifiqueGERMAIN, François; ROCHCONGAR, Goulven; THOREUX, Patricia; SKALLI, Wafa; ROUCH, Philippe; ROHAN, Pierre-Yves; PILLET, Helene (Springer International Publishing, 2016)The management of knee instability is a complex problem in orthopedic surgery. To comprehensively assess the biomechanical role of the knee joint and to investigate various aspects of knee mechanics, several Finite Element ...
-
Article dans une revue avec comité de lectureRIBES, Gwenael; AUBERT, Benjamin; ADAM, Clayton; MILADI, Lotfi; ILHARREBORDE, Brice; ABELIN-GENEVOIS, Kariman; SKALLI, Wafa; ROUCH, Philippe; VERGARI, Claudio (Springer Verlag, 2014)Study design: Retrospective validation study Objectives: To propose a method to evaluate, from a clinical standpoint, the ability of a finite element model (FEM) of the trunk to simulate orthotic correction of spinal ...