• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Collision Avoidance of Redundant Robotic Manipulators Using Newton’s Method

Article dans une revue avec comité de lecture
Auteur
SAFEEA, Mohammad
164378 Faculty of Sciences and Technology [Coimbra]
NETO, Pedro
164378 Faculty of Sciences and Technology [Coimbra]
ccBEAREE, Richard
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]

URI
http://hdl.handle.net/10985/18196
DOI
10.1007/s10846-020-01159-3
Date
2020
Journal
Journal of Intelligent and Robotic Systems

Résumé

This study investigates the application of Newton method to the problems of collision avoidance and path planning for robotic manipulators, especially robots with high Degrees of Freedom (DOF). The proposed algorithm applies to the potential fields method, where the Newton technique is used for performing the optimization. As compared to classical gradient descent method this implementation is mathematically elegant, enhances the performance of motion generation, eliminates oscillations, does not require gains tuning, and gives a faster convergence to the solution. In addition, the paper presents a computationally efficient symbolic formula for calculating the Hessian with respect to joint angles, which is essential for achieving realtime performance of the algorithm in high DOF configuration spaces. The method is validated successfully in simulation environment. Results for different methods (Newton, gradient descent and gradient descent with momentum) are compared in terms of quality of the path generated, oscillations, minimum distance to obstacles and convergence rate.

Fichier(s) constituant cette publication

Nom:
LISPEN_JIRS_2020_BEAREE.pdf
Taille:
1.369Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Robot dynamics: A recursive algorithm for efficient calculation of Christoffel symbols 
    Article dans une revue avec comité de lecture
    SAFEEA, Mohammad; NETO, Pedro; ccBEAREE, Richard (Elsevier, 2019)
    Christoffel symbols of the first kind are very important in robot dynamics. They are used for tuning various proposed robot controllers, for determining the bounds on Coriolis/Centrifugal matrix, for mathematical formulation ...
  • On-line collision avoidance for collaborative robot manipulators by adjusting off-line generated paths: An industrial use case 
    Article dans une revue avec comité de lecture
    SAFEEA, Mohammad; NETO, Pedro; ccBEAREE, Richard (Elsevier, 2019)
    Human–robot collision avoidance is a key in collaborative robotics and in the framework of Industry 4.0. It plays an important role for achieving safety criteria while having humans and machines working side-by-side in ...
  • Efficient Calculation of Minimum Distance Between Capsules and Its Use in Robotics 
    Article dans une revue avec comité de lecture
    SAFEEA, Mohammad; NETO, Pedro; ccBEAREE, Richard (IEEE, 2018)
    The problem of minimum distance calculation between line-segments/capsules, in 3D space, is an important subject in many engineering applications, spanning CAD design, computer graphics, simulation, and robotics. In the ...
  • Reducing the Computational Complexity of Mass-Matrix Calculation for High DOF Robots 
    Communication avec acte
    SAFEEA, Mohammad; NETO, Pedro; ccBEAREE, Richard (IEEE, 2018)
    Increasingly, robots have more degrees of freedom (DOF), imposing a need for calculating more complex dynamics. As a result, better efficiency in carrying out dynamics computations is becoming more important. In this study, ...
  • An integrated framework for collaborative robot-assisted additive manufacturing 
    Article dans une revue avec comité de lecture
    SAFEEA, Mohammad; NETO, Pedro; ccBEAREE, Richard (Elsevier BV, 2022-09)
    Additive manufacturing (AM) is revolutionizing industry, allowing to prototype and fabricate custom-made parts with complex geometries rapidly and at an affordable cost. The use of robots to perform AM has great potentials ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales