• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Efficient Human Activity Recognition Technique Based on Deep Learning

Article dans une revue avec comité de lecture
Auteur
KHELALEF, Aziz
238162 Université Hadj Lakhdar Batna 1
ABABSA, Fakhreddine
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
BENOUDJIT, Nabil
238162 Université Hadj Lakhdar Batna 1

URI
http://hdl.handle.net/10985/18281
DOI
10.1134/s1054661819040084
Date
2019
Journal
Распознавание образов и анализ изображе&#1085 / Pattern Recognition and Image Analysis: Advances in Mathematical Theory and Applications

Résumé

In this paper, we present a new deep learning-based human activity recognition technique. First, we track and extract human body from each frame of the video stream. Next, we abstract human silhouettes and use them to create binary space-time maps (BSTMs) which summarize human activity within a defined time interval. Finally, we use convolutional neural network (CNN) to extract features from BSTMs and classify the activities. To evaluate our approach, we carried out several tests using three public datasets: Weizmann, Keck Gesture and KTH Database. Experimental results show that our technique outperforms conventional state-of-the-art methods in term of recognition accuracy and provides comparable performance against recent deep learning techniques. It’s simple to implement, requires less computing power, and can be used for multi-subject activity recognition.

Fichier(s) constituant cette publication

Nom:
LISPEN_PRIA_ABABSA_2019.pdf
Taille:
2.146Mo
Format:
PDF
Fin d'embargo:
2020-06-29
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Towards improving the future of manufacturing through digital twin and augmented reality technologies 
    Article dans une revue avec comité de lecture
    RABAH, Souad; ASSILA, Ahlem; KHOURI, Elio; MAIER, Florian; ABABSA, Fakhreddine; BOURNY, Valéry; MAIER, Paul; ccMERIENNE, Frédéric (Elsevier, 2018)
    We are on the cusp of a technological revolution that will fundamentally change our relationships to others and the way we live and work. These changes, in their importance, scope, and complexity, is different than what ...
  • Usability of Augmented Reality in Aeronautic Maintenance, Repair and Overhaul 
    Communication avec acte
    FISCHINI, Antoine; ABABSA, Fakhreddine; GRASSER, Mickaël (2018)
    Augmented Reality (AR) is a strong growing research topic in several areas including industry, training, art and entertainment. AR can help users to achieve very complex tasks by enhancing their vision with useful and ...
  • Augmented Reality assistance for R&D assembly in Aeronautics 
    Communication avec acte
    PRUVOST, Martin; MIALOCQ, Pierre; ABABSA, Fakhreddine (2018)
    This paper presents an AR system architecture for assisting complex assembly work by adding visual information superimposed on the physical assembly parts.
  • Free Hand-Based 3D Interaction in Optical See-Through Augmented Reality Using Leap Motion 
    Communication avec acte
    ABABSA, Fakhreddine; HE, Junhui; ccCHARDONNET, Jean-Rémy (2018)
    In augmented reality environments, the natural hand interaction between a virtual object and the user is a major issue to manipulate a rendered object in a convenient way. Microsoft’s HoloLens (Microsoft 2018) is an ...
  • Evaluating Added Value of Augmented Reality to Assist Aeronautical Maintenance Workers - Experimentation on On-Field Use Case 
    Communication avec acte
    LOIZEAU, Quentin; ABABSA, Fakhreddine; ccMERIENNE, Frédéric; ccDANGLADE, Florence (2019)
    Augmented Reality (AR) technology facilitates interactions with information and understanding of complex situations. Aeronautical Maintenance combines complexity induced by the variety of products and constraints associated ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales