Laser-induced plume investigated by finite element modelling and scaling of particle entrainment in laser powder bed fusion
Article dans une revue avec comité de lecture
Date
2019Journal
Journal of Physics D: Applied PhysicsRésumé
Although metal vaporisation has been observed in several laser processes such as drilling or welding, vapour plume expansion and its induced side effects are not fully understood. Especially, this phenomenon is garnering scientific and industrial interest since recent investigations in laser powder bed fusion (LPBF) have designated metal vaporisation as main source of denudation and powder spattering. The present study aims to provide a new insight on the dynamics of laser-induced vaporisation and to assess the potential of different gases for particle entrainment. A self-consistent finite element model of laser-induced keyhole and plume is thus presented for this purpose, built from a comprehensive literature review. The model is validated with dedicated experimental diagnostics, involving high-speed imaging to measure the ascent velocity of the vapour plume. The transient dynamics of vapour plume is thus quantified for different laser incident intensities and gas flow patterns such as the mushroom-like structure of the vapour plume are analysed. Finally, the model is used as a tool to quantify the entrainment flow expected in LPBF and an analytical model is derived to define a velocity threshold for particle entrainment, expressed in term of background gas properties. Doing so it is possible to predict how denudation evolves when the gaseous atmosphere is changed.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureMAYI, Yaasin A.; PEYRE, Patrice; BELLET, Michel; METTON, Charlotte; MORICONI, Clara; FABBRO, Remy; DAL, Morgan (Laser Institute of America, 2021)A Finite element model is developed with a commercial code to investigate the keyhole dynamics and stability at keyhole threshold, a fusion regime characteristic to laser microwelding or to Laser Powder Bed Fusion. The ...
-
Article dans une revue avec comité de lectureThermo-hydrodynamic phenomena which take place during laser welding or additive manufacturing processes as laser powder bed fusion, have been investigated for years, but recent advances in X-ray images and in situ analysis ...
-
Absorptivity measurements during laser powder bed fusion of pure copper with a 1 kW cw green laser Article dans une revue avec comité de lectureNORDET, Guillaume; GORNY, Cyril; MAYI, Yaasin; DALIGAULT, Julien; DAL, Morgan; EFFERNELLI, A.; BLANCHET, E.; COSTE, Frédéric; PEYRE, Patrice (Elsevier Ltd, 2021-10)A 1 kW CW green laser source operating at 515 nm was used to investigate the absorptivity of pure copper powder beds and pure copper substrates. Various interaction regimes were considered, ranging from the solid and/or ...
-
Article dans une revue avec comité de lectureGUNENTHIRAM, Valérie; PEYRE, Patrice; COSTE, Frédéric; FABBRO, Rémy; DAL, Morgan; SCHNEIDER, Matthieu (Laser Institute of America, 2017)The laser powder bed fusion (LPBF) or powder-bed additive layer manufacturing process is now recognized as a high-potential manufacturing process for complex metallic parts. However, many technical issues are still to ...