• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Parametric inverse impulse response based on reduced order modeling and randomized excitations

Article dans une revue avec comité de lecture
Auteur
MONTAGUD, Santiago
1002421 Institut de Mécanique et d'Ingénierie de Bordeaux [I2M]
AGUADO, José Vicente
111023 École Centrale de Nantes [ECN]
JOYOT, Pierre
1002421 Institut de Mécanique et d'Ingénierie de Bordeaux [I2M]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/18363
DOI
10.1016/j.ymssp.2019.106392
Date
2020
Journal
Mechanical Systems and Signal Processing

Résumé

This paper is concerned with the computation of the inverse impulse response of a parametrized structural dynamics problem using reduced-order modeling and randomized excitations. A two-stages approach is proposed, involving the solution of both direct and inverse problems. In the first stage, the parametrized structural dynamics problem is formulated in the frequency domain, and solved using a reduced-order modeling approach. As a result, the parametric transfer function of the structure is obtained, and then readily transformed into a parametric direct impulse response (DIR). In the second stage, the parametric inverse impulse response (IIR) is computed. We use randomized excitations to generate synthetic samples inexpensively from the parametric DIR. Based on these, the parametric IIR is computed by minimizing the mean square error between the estimate and the samples. Most importantly, we show that the randomized excitations can be generated by sampling the frequency domain only. Hence, the parametric domain does not need to be sampled, which makes the computation of the parametric IIR very efficient.

Fichier(s) constituant cette publication

Nom:
PIMM_MSSP_ 2020_CHINESTA.pdf
Taille:
1.679Mo
Format:
PDF
Description:
Article
Fin d'embargo:
2020-07-31
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Separated representation of incremental elastoplastic simulations 
    Communication avec acte
    NASRI, Mohamed Aziz; AGUADO, José Vicente; ccAMMAR, Amine; ccCUETO, Elias; ccCHINESTA SORIA, Francisco; ccMOREL, Franck; ROBERT, Camille; ccEL AREM, Saber (Key Engineering Materials, 2015)
    Forming processes usually involve irreversible plastic transformations. The calculation in that case becomes cumbersome when large parts and processes are considered. Recently Model Order Reduction techniques opened new ...
  • Advanced parametric space-frequency separated representations in structural dynamics: A harmonic–modal hybrid approach 
    Article dans une revue avec comité de lecture
    MUHAMMAD HARIS, Malik; BORZACCHIELLO, Domenico; AGUADO, José Vicente; ccCHINESTA SORIA, Francisco (Elsevier Masson, 2018)
    This paper is concerned with the solution to structural dynamics equations. The technique here presented is closely related to Harmonic Analysis, and therefore it is only concerned with the long-term forced response. Proper ...
  • Reduced-order modeling of soft robots 
    Article dans une revue avec comité de lecture
    CHENEVIER, Jean; ccCUETO, Elias; GONZALEZ, David; AGUADO, José Vicente; ccCHINESTA SORIA, Francisco (Public Library of Science, 2018)
    We present a general strategy for the modeling and simulation-based control of soft robots. Although the presented methodology is completely general, we restrict ourselves to the analysis of a model robot made of hyperelastic ...
  • Induction machine model with finite element accuracy for condition monitoring running in real time using hardware in the loop system 
    Article dans une revue avec comité de lecture
    SAPENA-BAÑÓ, Angel; AGUADO, José Vicente; BORZACCHIELLO, Domenico; PUCHE-PANADERO, Rubén; ccCHINESTA SORIA, Francisco (Elsevier, 2019)
    Most industrial processes are run by induction machines (IMs). Condition monitoring of IM assures their continuity of service, and it may avoid highly costly breakdowns. Among the methods for condition monitoring, on-line ...
  • Tensor Representation of Non-linear Models Using Cross Approximations 
    Article dans une revue avec comité de lecture
    AGUADO, José Vicente; BORZACCHIELLO, Domenico; KOLLEPARA, Kiran S.; HUERTA, Antonio; ccCHINESTA SORIA, Francisco (Springer Verlag, 2019)
    Tensor representations allow compact storage and efficient manipulation of multi-dimensional data. Based on these, tensor methods build low-rank subspaces for the solution of multi-dimensional and multi-parametric models. ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales