A mechanical model to investigate the role of the nucleus during confined cell migration
Article dans une revue avec comité de lecture
Date
2015Journal
Computer Methods in Biomechanics and Biomedical EngineeringRésumé
1. Introduction Cell migration in confinement plays a fundamental role in biological processes such as embryogenesis, immune response and tumorogenesis. Specifically, tumor cells continuously adapt their migratory behaviour to their environment. Therefore, it has become timely and essential for diagnostic purposes to quanti- tatively evaluate the cell deformability in confinement. Here, we propose a two-dimensional mechanical model to simulate the migration of a HeLa cell through a micro- channel. We will evaluate both the invasiveness of the cell and the mechanical forces exerted by the cell according to the surrounding microstructure.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureMONDESERT-DEVERAUX, Solenne; ALLENA, Rachele; AUBRY, Denis (Tech Science Press, 2018)Cell migration is the cornerstone of many biological phenomena such as cancer metastasis, immune response or organogenesis. Adhesion-based motility is the most renown and examined motility mode, but in an adhesion-free ...
-
Article dans une revue avec comité de lectureMONDESERT-DEVERAUX, Solenne; ALLENA, Rachele; AUBRY, Denis (Springer Verlag, 2019)Considering the major role of confined cell migration in biological processes and diseases, such as embryogenesis or metastatic cancer, it has become increasingly important to design relevant experimental set-ups for in ...
-
Article dans une revue avec comité de lectureDEVERAUX, Solenne; ALLENA, Rachele; AUBRY, Denis (Elsevier, 2017)Cell deformability is a necessary condition for a cell to be able to migrate, an ability that is vital both for healthy and diseased organisms. The nucleus being the largest and stiffest organelle, it often is a barrier ...
-
Article dans une revue avec comité de lectureDAVIDSON, Patricia M; FEDORCHAK, Gregory R; MONDESERT-DEVERAUX, Solenne; BELL, Emily S; ISERMANN, Philipp; AUBRY, Denis; ALLENA, Rachele; LAMMERDING, Jan (Royal Society of Chemistry, 2019)The mechanical properties of the cell nucleus are increasingly recognized as critical in many biological processes. The deformability of the nucleus determines the ability of immune and cancer cells to migrate through ...
-
Article dans une revue avec comité de lectureFEDORCHAK, Gregory; MONDÉSERT-DEVERAUX, Solenne; BELL, Emily; ISERMANN, Philipp; AUBRY, Denis; ALLENA, Rachele; LAMMERDING, Jan (Royal Society of Chemistry, 2019)The mechanical properties of the cell nucleus are increasingly recognized as critical in many biological processes. The deformability of the nucleus determines the ability of immune and cancer cells to migrate through ...
