• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Dynamique des Fluides (DynFluid)
  • Voir le document
  • Accueil de SAM
  • Dynamique des Fluides (DynFluid)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Weakly nonlinear optimal perturbations

Article dans une revue avec comité de lecture
Auteur
PRALITS, Jan O.
214618 Dipartimento di Ingegneria Civile, Chimica e Ambientale [Genova] [DICCA]
BOTTARO, Alessandro
214618 Dipartimento di Ingegneria Civile, Chimica e Ambientale [Genova] [DICCA]
CHERUBINI, Stefania
134975 Laboratoire de Dynamique des Fluides [DynFluid]

URI
http://hdl.handle.net/10985/18608
DOI
10.1017/jfm.2015.622
Date
2015
Journal
Journal of Fluid Mechanics

Résumé

A simple approach is described for computing spatially extended, weakly nonlinear optimal disturbances, suitable for maintaining a disturbance-regeneration cycle in a simple shear flow. Weakly nonlinear optimals, computed over a short time interval for the expansion used to remain tenable, are oblique waves which display a shorter streamwise and a longer spanwise wavelength than their linear counterparts. Threshold values of the initial excitation energy, separating the region of damped waves from that where disturbances grow without bounds, are found. Weakly nonlinear optimal solutions of varying initial amplitudes are then fed as initial conditions into direct numerical simulations of the Navier–Stokes equations and it is shown that the weakly nonlinear model permits the identification of flow states which cause rapid breakdown to turbulence.

Fichier(s) constituant cette publication

Nom:
DYNFLUID_JFM_2015_CHERUBINI.pdf
Taille:
2.699Mo
Format:
PDF
Description:
Article
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Dynamique des Fluides (DynFluid)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • The minimal seed of turbulent transition in the boundary layer 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; DE PALMA, Pietro; BOTTARO, Alessandro; ccROBINET, Jean-Christophe (Cambridge University Press (CUP), 2011)
    This paper describes a scenario of transition from laminar to turbulent flow in a spatially developing boundary layer over a flat plate. The base flow is the Blasius non-parallel flow solution; it is perturbed by optimal ...
  • A purely nonlinear route to transition approaching the edge of chaos in a boundary layer 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; DE PALMA, Pietro; BOTTARO, Alessandro; ccROBINET, Jean-Christophe (IOP Publishing, 2012)
    The understanding of transition in shear flows has recently progressed along new paradigms based on the central role of coherent flow structures and their nonlinear interactions. We follow such paradigms to identify, by ...
  • Edge states in a boundary layer 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; DE PALMA, Pietro; BOTTARO, Alessandro; ccROBINET, Jean-Christophe (American Institute of Physics, 2011)
    The understanding of laminar-turbulent transition in shear flows has recently progressed along new paradigms based on the central role of nonlinear exact coherent states. We follow such paradigms to identify, for the first ...
  • Optimal wave packets in a boundary layer and initial phases of a turbulent spot 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; BOTTARO, Alessandro; DE PALMA, Pietro; ccROBINET, Jean-Christophe (Cambridge University Press (CUP), 2010)
    The three-dimensional global optimal dynamics of a flat-plate boundary layer is studied by means of an adjoint-based optimization in a spatial domain of long – but finite – streamwise dimension. The localized optimal initial ...
  • Effect of plate permeability on nonlinear stability of the asymptotic suction boundary layer 
    Article dans une revue avec comité de lecture
    WEDIN, Hakan; CHERUBINI, Stefania; BOTTARO, Alessandro (American Physical Society, 2015)
    The nonlinear stability of the asymptotic suction boundary layer is studied numerically, searching for finite-amplitude solutions that bifurcate from the laminar flow state. By changing the boundary conditions for disturbances ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales