• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Radars in Transport Applications

Chapitre d'ouvrage scientifique
Auteur
IBÁÑEZ PINILLO, Rubén
111023 École Centrale de Nantes [ECN]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccABISSET-CHAVANNE, Emmanuelle
564849 ESI Group [ESI Group]
ABENIUS, Erik
HUERTA, Antonio
85878 Universitat Politècnica de Catalunya = Université polytechnique de Catalogne [Barcelona] [UPC]

URI
http://hdl.handle.net/10985/18620
DOI
10.1007/978-3-030-37752-6_12
Date
2020

Résumé

In the recent years, automotive car industry is evolving towards a new generation of autonomous vehicles, where decision making is not fully perform by the driver but it partially relies on the technology of the car itself. Indeed, a CPU inside the car will process all information coming from the sensors, distinguishing different scenarios appearing in the real life and ultimately allowing decision making. Since the CPU will be confronted with plenty of information, tools like machine learning or big-data analysis will be a useful ally to separate data from information. These existing machine learning techniques, such as kernel Principal Component Analysis (k-PCA), Locally Linear Embedding (LLE) among many other techniques, are useful to unveil the latent parameters defining a given scenario. Indeed, these algorithms have been already used to perform real-time classification of signals appearing throughout the road. Selecting the modeling of the electromagnetic response of the radar plays an important role to achieve real time constraints. Even though Helmholtz equation represents accurately the physics, the computational cost of such simulation is not affordable for real-time applications due to high radar operating frequencies, resulting into a very fine finite element mesh. On the other hand, far field approaches are not so accurate when the objects are very close due to plane wave assumption. In the first part of this work, the Geometrical Optics method is investigated in this work as a possible route to fulfill both real-time and accuracy constraints. The main hypothesis under such model is that waves are treated as straight lines constrained to optical reflection laws. Therefore, there is no need to mesh the interior of the domain. However, the accuracy of such approach is compromised when the size of the objects inside the domain are comparable to the wave lengths or in the vicinity of angular points. The second part is mainly focused on of the application of manifold learning and big data analysis into a data set of precomputed scenarios. Indeed, the identification of an unknown scenario from electromagnetic signals is purchased. Nevertheless, current research lines are devoted to give an answer to questions such as how many receptors do we need to identify unequivocally the scenario, where to locate the receptors, or which parts of the scenario have a negligible impact in the electromagnetic response.

Fichier(s) constituant cette publication

Nom:
PIMM_CBDT_ 2020_CHINESTA.pdf
Taille:
803.6Ko
Format:
PDF
Description:
Chapitres d'ouvrages
Fin d'embargo:
2020-08-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • A simple microstructural viscoelastic model for flowing foams 
    Article dans une revue avec comité de lecture
    IBÁÑEZ, Rubén; SCHEUER, Adrien; HUERTA, Antonio; KEUNINGS, Roland; ccABISSET-CHAVANNE, Emmanuelle; ccCHINESTA SORIA, Francisco (Springer Verlag, 2018)
    The numerical modelling of forming processes involving the flow of foams requires taking into account the different problem scales. Thus, in industrial applications a macroscopic approach is suitable, whereas the macroscopic ...
  • A local multiple proper generalized decomposition based on the partition of unity 
    Article dans une revue avec comité de lecture
    IBAÑEZ, Ruben; HUERTA, Antonio; ccCUETO, Elias; ccABISSET-CHAVANNE, Emmanuelle; ccCHINESTA SORIA, Francisco (Wiley, 2019)
    It is well known that model order reduction techniques that project the solution of the problem at hand onto a low-dimensional subspace present difficulties when this solution lies on a nonlinear manifold. To overcome these ...
  • A Multidimensional Data-Driven Sparse Identification Technique: The Sparse Proper Generalized Decomposition 
    Article dans une revue avec comité de lecture
    IBAÑEZ, Ruben; ccABISSET-CHAVANNE, Emmanuelle; ccAMMAR, Amine; GONZALEZ, David; ccCUETO, Elias; HUERTA, Antonio; DUVAL, Jean-Louis; ccCHINESTA SORIA, Francisco (Wiley, 2018)
    Sparse model identification by means of data is especially cumbersome if the sought dynamics live in a high dimensional space. This usually involves the need for large amount of data, unfeasible in such a high dimensional ...
  • Tape surface characterization and classification in automated tape placement processability: Modeling and numerical analysis 
    Article dans une revue avec comité de lecture
    ARGERICH, Clara; IBÁÑEZ, Rubén; LEÓN, Angel; ccABISSET-CHAVANNE, Emmanuelle; ccCHINESTA SORIA, Francisco (AIMS Press, 2018)
    Abstract: Many composite forming processes are based on the consolidation of preimpregnated preforms of different types, e.g., sheets, tapes, .... Composite plies are put in contact using different technologies and ...
  • Hybrid constitutive modeling: data-driven learning of corrections to plasticity models 
    Article dans une revue avec comité de lecture
    IBÁÑEZ, Rubén; GONZÁLEZ, David; DUVAL, Jean Louis; ccCUETO, Elias; ccABISSET-CHAVANNE, Emmanuelle; ccCHINESTA SORIA, Francisco (Springer Verlag, 2019)
    In recent times a growing interest has arose on the development of data-driven techniques to avoid the employ of phenomenological constitutive models. While it is true that, in general, data do not fit perfectly to existing ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales