• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Data-Driven Learning Method for Constitutive Modeling: Application to Vascular Hyperelastic Soft Tissues

Article dans une revue avec comité de lecture
Author
GONZÁLEZ, David
95355 Universidad de Zaragoza = University of Zaragoza [Saragossa University] = Université de Saragosse
GARCÍA-GONZÁLEZ, Alberto
85878 Universitat Politècnica de Catalunya = Université polytechnique de Catalogne [Barcelona] [UPC]
ccCUETO, Elias
95355 Universidad de Zaragoza = University of Zaragoza [Saragossa University] = Université de Saragosse
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/18676
DOI
10.3390/ma13102319
Date
2020
Journal
Materials

Abstract

We address the problem of machine learning of constitutive laws when large experimental deviations are present. This is particularly important in soft living tissue modeling, for instance, where large patient-dependent data is found. We focus on two aspects that complicate the problem, namely, the presence of an important dispersion in the experimental results and the need for a rigorous compliance to thermodynamic settings. To address these difficulties, we propose to use, respectively, Topological Data Analysis techniques and a regression over the so-called General Equation for the Nonequilibrium Reversible-Irreversible Coupling (GENERIC) formalism (M. Grmela and H. Ch. Oettinger, Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56, 6620, 1997). This allows us, on one hand, to unveil the true “shape” of the data and, on the other, to guarantee the fulfillment of basic principles such as the conservation of energy and the production of entropy as a consequence of viscous dissipation. Examples are provided over pseudo-experimental and experimental data that demonstrate the feasibility of the proposed approach.

Files in this item

Name:
PIMM_ M_2020_CHINESTA.pdf
Size:
755.1Kb
Format:
PDF
Description:
Article
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • A thermodynamics-informed active learning approach to perception and reasoning about fluids 
    Article dans une revue avec comité de lecture
    ccMOYA GARCÍA, Beatriz; ccBADIAS, Alberto; GONZALEZ, David; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (2023)
    Learning and reasoning about physical phenomena is still a challenge in robotics development, and computational sciences play a capital role in the search for accurate methods able to provide explanations for past events ...
  • MORPH-DSLAM: Model Order Reduction for Physics-Based Deformable SLAM 
    Article dans une revue avec comité de lecture
    ccBADIAS, Alberto; ALFARO, Icíar; GONZALEZ, David; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (Institute of Electrical and Electronics Engineers (IEEE), 2022-11)
    We propose a new methodology to estimate the 3D displacement field of deformable objects from video sequences using standard monocular cameras. We solve in real time the complete (possibly visco-)hyperelasticity problem ...
  • Structure-preserving neural networks 
    Article dans une revue avec comité de lecture
    HERNÁNDEZ, Quercus; BADÍAS, Alberto; GONZÁLEZ, David; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (Elsevier, 2021)
    We develop a method to learn physical systems from data that employs feedforward neural networks and whose predictions comply with the first and second principles of thermodynamics. The method employs a minimum amount of ...
  • Deep learning of thermodynamics-aware reduced-order models from data 
    Article dans une revue avec comité de lecture
    HERNANDEZ, Quercus; BADIAS, Alberto; GONZALEZ, David; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (Elsevier, 2021)
    We present an algorithm to learn the relevant latent variables of a large-scale discretized physical system and predict its time evolution using thermodynamically-consistent deep neural networks. Our method relies on sparse ...
  • An augmented reality platform for interactive aerodynamic design and analysis 
    Article dans une revue avec comité de lecture
    BADÍAS, Alberto; CURTIT, Sarah; GONZÁLEZ, David; ccCUETO, Elias; ALFARO, Icíar; ccCHINESTA SORIA, Francisco (Wiley, 2019)
    While modern CFD tools are able to provide the user with reliable and accurate simulations, there is a strong need for interactive design and analysis tools. State-of-the-art CFD software employs massive resources in terms ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales