Ageing and Degradation of Multiphase Polymer Systems
Chapitre d'ouvrage scientifique
Résumé
Ageing can be defined as a slow and irreversible variation as a function of time (in use conditions) of a material structure, morphology or composition leading to a detrimental change in its use properties. The cause of this change can be the own material instability or its interaction with the environment of exposure. The definition so given is that viewed from an application point of view. There are issues associated with this definition that deserve to be mentioned. First, there are ageing mechanisms, essentially of a physical nature as detailed below, that are not irreversible in nature (e.g. crystallinity change, structural recovery, water uptake without loss of the integrity of the chemical structure, etc.), but may lead to a change in the use properties of these materials. The reversibility is in principle achievable by, e.g. thermal treatment or drying. However, this is not necessarily compatible with the use of materials as pieces, or the material will evolve again anyway when exposed to use environmental stresses. Second, irreversible material evolution in itself does not necessarily imply a detrimental change of use properties. It can even result in an improvement of properties. This represents indeed a marked difficulty when attempting to define so-called ‘ageing markers’ for materials, i.e. material properties to be monitored for health monitoring purpose: the marker must be sensitive enough so as to provide the early signs of material evolution but, at the same time, there should be a correlation between the evolution of the marker and the changes in use properties.
Fichier(s) constituant cette publication
- Nom:
- PIMM_HMPS_2011_COLIN.pdf
- Taille:
- 1.407Mo
- Format:
- Description:
- Chapitres d'ouvrages scientifiques
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureThe thermal degradation of PEEK has been studied in rubbery state in wide ranges of temperature (between 180 and 320 °C) and oxygen partial pressure (between 0.21 and 50 bars). On one hand, the thermal ageing mechanisms ...
-
Article dans une revue avec comité de lectureA kinetic model has been derived from the classical (Fick and Henry’s) laws of the gas theory for predicting the oxygen permeability of a closed composite container, initially filled by pure nitrogen under a pressure ...
-
Article dans une revue avec comité de lectureBEN HASSINE, Mouna; NAÏT-ABDELAZIZ, M; ZAÏRI, F; TOURCHER, C; MARQUE, Gregory; COLIN, Xavier (Elsevier, 2014)In this contribution, we attempt to derive a tool allowing the prediction of the stretch ratioat failure in rubber components subjected to thermal ageing. To achieve this goal, the mainidea is to combine the fracture ...
-
Article dans une revue avec comité de lectureA general kinetic model for the photothermal oxidation of polypropylene has been derived from the basic auto-oxidation mechanistic scheme in which the main sources of radicals are the thermolysis and photolysis of the most ...
-
Article dans une revue avec comité de lectureThe detection of branched chains in thermally degraded thermoplastic polymers is far from simple, especially at a low conversion ratio, mainly because of the low sensitivity of commonly used laboratory analytical techniques. ...