kPCA-Based Parametric Solutions Within the PGD Framework
Article dans une revue avec comité de lecture
Date
2018Journal
Archives of Computational Methods in EngineeringRésumé
Parametric solutions make possible fast and reliable real-time simulations which, in turn allow real time optimization, simulation-based control and uncertainty propagation. This opens unprecedented possibilities for robust and efficient design and real-time decision making. The construction of such parametric solutions was addressed in our former works in the context of models whose parameters were easily identified and known in advance. In this work we address more complex scenarios in which the parameters do not appear explicitly in the model—complex microstructures, for instance. In these circumstances the parametric model solution requires combining a technique to find the relevant model parameters and a solution procedure able to cope with high-dimensional models, avoiding the well-known curse of dimensionality. In this work, kPCA (kernel Principal Component Analysis) is used for extracting the hidden model parameters, whereas the PGD (Proper Generalized Decomposition) is used for calculating the resulting parametric solution.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureIBÁÑEZ, Rubén; GONZÁLEZ, David; DUVAL, Jean Louis; CUETO, Elias; ABISSET-CHAVANNE, Emmanuelle; CHINESTA SORIA, Francisco (Springer Verlag, 2019)In recent times a growing interest has arose on the development of data-driven techniques to avoid the employ of phenomenological constitutive models. While it is true that, in general, data do not fit perfectly to existing ...
-
Article dans une revue avec comité de lectureIBAÑEZ, Ruben; ABISSET-CHAVANNE, Emmanuelle; AMMAR, Amine; GONZALEZ, David; CUETO, Elias; HUERTA, Antonio; DUVAL, Jean-Louis; CHINESTA SORIA, Francisco (Wiley, 2018)Sparse model identification by means of data is especially cumbersome if the sought dynamics live in a high dimensional space. This usually involves the need for large amount of data, unfeasible in such a high dimensional ...
-
Article dans une revue avec comité de lectureCHINESTA SORIA, Francisco; LEYGUE, Adrien; BORDEU, Felipe; AGUADO, Jose Vicente; CUETO, Elias; GONZALEZ, David; ALFARO, Icíar; AMMAR, Amine; HUERTA, Antonio (Springer Verlag, 2013)In this paper we are addressing a new paradigm in the field of simulation-based engineering sciences (SBES) to face the challenges posed by current ICT technologies. Despite the impressive progress attained by simulation ...
-
Article dans une revue avec comité de lectureCHENEVIER, Jean; CUETO, Elias; GONZALEZ, David; AGUADO, Jose Vicente; CHINESTA SORIA, Francisco (Public Library of Science, 2018)We present a general strategy for the modeling and simulation-based control of soft robots. Although the presented methodology is completely general, we restrict ourselves to the analysis of a model robot made of hyperelastic ...
-
Article dans une revue avec comité de lecturePEREZ, Marta; PRONO, David; GHNATIOS, Chady; ABISSET-CHAVANNE, Emmanuelle; DUVAL, Jean-Louis; CHINESTA SORIA, Francisco (Springer Verlag, 2019)In SMC processes, a charge of a composite material, which typically consists of a matrix composed of an unsaturated polyester or vinylester, reinforced with chopped glass fibres or carbon fi bre bundles and fillers, is ...