• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Causality learning approach for supervision in the context of Industry 4.0

Communication avec acte
Auteur
AMZIL, Kenza
ccROUCOULES, Lionel
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
ccYAHIA, Esma
ccKLEMENT, Nathalie

URI
http://hdl.handle.net/10985/19401
Date
2021

Résumé

In order to have a full control on their processes, companies need to ensure real time monitoring and supervision using Key performance Indicators (KPI). KPIs serve as a powerful tool to inform about the process flow status and objectives’ achievement. Although experts are consulted to analyze, interpret, and explain KPIs’ values in order to extensively identify all influencing factors; this does not seem completely guaranteed if they only rely on their experience. In this paper, the authors propose a generic causality learning approach for monitoring and supervision. A causality analysis of KPIs’ values is hence presented, in addition to a prioritization of their influencing factors in order to provide a decision support. A KPI prediction is also suggested so that actions can be anticipated.

Fichier(s) constituant cette publication

Nom:
LISPEN_JCM_2020_AMZIL.pdf
Taille:
946.4Ko
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Automatic neural networks construction and causality ranking for faster and more consistent decision making 
    Article dans une revue avec comité de lecture
    AMZIL, Kenza; ccYAHIA, Esma; ccKLEMENT, Nathalie; ccROUCOULES, Lionel (Taylor & Francis, 2022-11-11)
    The growth of Information Technologies in industrial contexts have resulted in data proliferation. These data often underlines useful information which can be of great benefit when it comes to decision-making. Key ...
  • A Process Mining Based Approach to Support Decision Making 
    Communication avec acte
    ES-SOUFI, Widad; ccROUCOULES, Lionel; ccYAHIA, Esma (Springer, 2017)
    Currently, organizations tend to reuse their past knowledge to make good decisions quickly and effectively and thus, to improve their business processes performance in terms of time, quality, efficiency, etc. Process mining ...
  • Digital Continuity Based on Reinforcement Learning Model Transformation 
    Conférence invitée
    BRILHAULT, Quentin; ccESMA, YAHIA; ccLIONEL, ROUCOULES (Springer, 2022-09-25)
    With the importance gained by Service-Oriented Architectures (SOA) to simplify and decompose complex enterprise information system into autonomous, modular, reusable and, flexible model, the need to make models interoperable ...
  • Design process and trace modelling for design rationale capture 
    communication avec actes
    MOONES, Emna; ccROUCOULES, Lionel; ccYAHIA, Esma (2014)
    To face the high industrial concurrence and to remain competitive, companies are asked to work in a context of collaborative engineering environment where design rationale is a prerogative to reduce their product development ...
  • On the use of Process Mining and Machine Learning to support decision making in systems design 
    Communication avec acte
    ES-SOUFI, Widad; ccROUCOULES, Lionel; ccYAHIA, Esma (Springer, 2016)
    Research on process mining and machine learning techniques has recently received a significant amount of attention by product development and management communities. Indeed, these techniques allow both an automatic process ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales