• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structure-preserving neural networks

Article dans une revue avec comité de lecture
Auteur
HERNÁNDEZ, Quercus
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
BADÍAS, Alberto
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
GONZÁLEZ, David
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
ccCUETO, Elias
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/19561
DOI
10.1016/j.jcp.2020.109950
Date
2020
Journal
Journal of Computational Physics

Résumé

We develop a method to learn physical systems from data that employs feedforward neural networks and whose predictions comply with the first and second principles of thermodynamics. The method employs a minimum amount of data by enforcing the metriplectic structure of dissipative Hamiltonian systems in the form of the so-called General Equation for the Non-Equilibrium Reversible-Irreversible Coupling, GENERIC (Öttinger and Grmela (1997) [36]). The method does not need to enforce any kind of balance equation, and thus no previous knowledge on the nature of the system is needed. Conservation of energy and dissipation of entropy in the prediction of previously unseen situations arise as a natural by-product of the structure of the method. Examples of the performance of the method are shown that comprise conservative as well as dissipative systems, discrete as well as continuous ones.

Fichier(s) constituant cette publication

Nom:
PIMM_JCP_ 2020_CHINESTA.pdf
Taille:
783.1Ko
Format:
PDF
Description:
Article
Fin d'embargo:
2021-04-23
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Structure-preserving neural networks 
    Article dans une revue avec comité de lecture
    HERNÁNDEZ, Quercus; BADÍAS, Alberto; GONZÁLEZ, David; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (Elsevier, 2021)
    We develop a method to learn physical systems from data that employs feedforward neural networks and whose predictions comply with the first and second principles of thermodynamics. The method employs a minimum amount of ...
  • Deep learning of thermodynamics-aware reduced-order models from data 
    Article dans une revue avec comité de lecture
    HERNANDEZ, Quercus; BADIAS, Alberto; GONZALEZ, David; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (Elsevier, 2021)
    We present an algorithm to learn the relevant latent variables of a large-scale discretized physical system and predict its time evolution using thermodynamically-consistent deep neural networks. Our method relies on sparse ...
  • Thermodynamics-informed neural networks for physically realistic mixed reality 
    Article dans une revue avec comité de lecture
    ccHERNÁNDEZ, Quercus; ccBADIAS, Alberto; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (2023)
    The imminent impact of immersive technologies in society urges for active research in real-time and interactive physics simulation for virtual worlds to be realistic. In this context, realistic means to be compliant to the ...
  • Port-metriplectic neural networks: thermodynamics-informed machine learning of complex physical systems 
    Article dans une revue avec comité de lecture
    ccHERNÁNDEZ, Quercus; ccBADIAS, Alberto; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (2023)
    We develop inductive biases for the machine learning of complex physical systems based on the port-Hamiltonian formalism. To satisfy by construction the principles of thermodynamics in the learned physics (conservation of ...
  • A thermodynamics-informed active learning approach to perception and reasoning about fluids 
    Article dans une revue avec comité de lecture
    ccMOYA GARCÍA, Beatriz; ccBADIAS, Alberto; GONZALEZ, David; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (2023)
    Learning and reasoning about physical phenomena is still a challenge in robotics development, and computational sciences play a capital role in the search for accurate methods able to provide explanations for past events ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales