• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unsupervised damage clustering in complex aeronautical composite structures monitored by Lamb waves: An inductive approach

Article dans une revue avec comité de lecture
Auteur
RAHBARI, Amirhossein
ccRÉBILLAT, Marc
ccMECHBAL, Nazih
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
CANU, Stephane
23832 Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes [LITIS]

URI
http://hdl.handle.net/10985/19564
DOI
10.1016/j.engappai.2020.104099
Date
2021
Journal
Engineering Applications of Artificial Intelligence

Résumé

Structural Health Monitoring (SHM), i.e. the action of monitoring structures in real-time and in an automated manner, is a major challenge in several industrial fields such as aeronautic. SHM is by nature a very high dimensional data-driven problem that possesses several specificities when addressed as a machine learning problem. First of all data in damaged cases are rare and very costly as the generation of damaged data is not always possible and simulations are not reliable especially when dealing with complex structures. SHM is thus by nature an unsupervised problem. Furthermore, any incoming sample should be instantaneously clustered and handcrafted damage indexes are commonly used as a first dimension reduction step due to large datasets to be processed. As a consequence, unsupervised dimensionality reduction (DR) techniques that project very high dimensional data into a two or three-dimensional space (such as t-SNE or UMAP) are very appealing in such a context. However, these methods suffer from one major drawback which is that they are unable to cluster any unknown incoming sample. To solve this we propose to add inductive abilities to these well know methods by associating their projection bases with Deep Neural Networks (DNNs). The resulting DNNs are then able to cluster any incoming unknown samples. Based on those tools, a SHM methodology allowing for unsupervised damage clustering with dimensionality reduction is presented here. To demonstrate the effectiveness of the method, results of damage classification on large experimental data sets coming from complex aeronautical composite structures monitored through Lamb waves are shown. Furthermore, several DR techniques have been benchmarked and recommendations are derived. It is demonstrated that the use of raw Lamb wave signals instead of the associated damage indexes is more effective. This non-intuitive result helps to reduce the gap between laboratory research and the actual start-up of SHM activities in industrial applications.

Fichier(s) constituant cette publication

Nom:
PIMM_ EAAI_ 2021_RAHBAR.pdf
Taille:
5.169Mo
Format:
PDF
Description:
Article
Fin d'embargo:
2021-07-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • In-situ monitoring of µm-sized electrochemically generated corrosion pits using Lamb Waves managed by a sparse array of piezoelectric transducers 
    Communication sans acte
    ccRÉBILLAT, Marc; ccNICARD, Cyril; ccDEVOS, Olivier; ccEL MAY, Mohamed; LETELLIER, Frédéric; THOMACHOT, Matthieu; FOURNIER, Marc; ccMECHBAL, Nazih (2024-09)
    al components, roughening the outer surface, loosening fasteners, hastening cracking, and facilitating the entry of water into electronic fixtures. In 2016, the combined commercial aircraft fleet operated by European ...
  • Improving Lamb Wave detection for SHM using a dedicated LWDS electronics 
    Communication avec acte
    JAUSSAUD, Gladys; REBUFA, Jocelyn; FOURNIER, Marc; LOGEAIS, Matthieu; BENCHEIKH, Nabil; ccMECHBAL, Nazih; ccRÉBILLAT, Marc (NTD, 2019)
    In the context of Condition Based Maintenance (CBM) for aircrafts, Structural Health Monitoring (SHM) is one main field of research. Detection and localization of damages in a structure request reliability of the equipment ...
  • COQTEL: Corrosion Quantification Through Extended use of Lamb Waves 
    Communication sans acte
    ccRÉBILLAT, Marc; NICARD, Cyril; ccEL MAY, Mohamed; LETELLIER, Frédéric; DUBENT, Sébastien; THOMACHOT, Mathieu; FOURNIER, Marc; ccMECHBAL, Nazih (2024)
    Corrosion is a major threat in the aeronautic industry, both in terms of safety and cost. Efficient, versatile, and cost affordable solutions for corrosion monitoring are thus needed. Ultrasonic Lamb Waves (LW) appear to be ...
  • Bending waves focusing in arbitrary shaped plate-like structures: Study of temperature effects, development of a digital twin and of an associated neural-network based compensation procedure 
    Article dans une revue avec comité de lecture
    BENBARA, Nassim; MARTIN, Guillaume; ccRÉBILLAT, Marc; ccMECHBAL, Nazih (Elsevier BV, 2022-02-07)
    Advanced automotive audio applications are more and more demanding with respect to the visual impact of loudspeakers while still requiring more and more channels for high quality spatial audio rendering. Removing classical ...
  • Systems and methods for controlling and implantable blood pump 
    Brevet
    SCHEFFLER, Mattias; BARABINO, Nicolas; ccRÉBILLAT, Marc; ccMONTEIRO, Eric; ccMECHBAL, Nazih (2022-03)
    Systems and methods for controlling an implantable pump are provided. For example, the exemplary controller for controlling the implantable pump may only rely on the actuator's current measurement. The controller is robust ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales