• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
  • Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Non-intrusive reduced order modelling for the dynamics of geometrically nonlinear flat structures using three-dimensional finite elements

Article dans une revue avec comité de lecture
Author
VIZZACCARO, Alessandra
69530 Imperial College London
GIVOIS, Arthur
12568 Laboratoire de Mécanique des Structures et des Systèmes Couplés [LMSSC]
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
LONGOBARDI, Pierluigi
69530 Imperial College London
ccSHEN, Yichang
421305 Institut des Sciences de la Mécanique et Applications Industrielles [IMSIA]
DEÜ, Jean-François
12568 Laboratoire de Mécanique des Structures et des Systèmes Couplés [LMSSC]
SALLES, Loïc
69530 Imperial College London
ccTOUZÉ, Cyril
421305 Institut des Sciences de la Mécanique et Applications Industrielles [IMSIA]
ccTHOMAS, Olivier
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]

URI
http://hdl.handle.net/10985/19598
DOI
10.1007/s00466-020-01902-5
Date
2020
Journal
Computational Mechanics

Abstract

Non-intrusive methods have been used since two decades to derive reduced-order models for geometrically nonlinear structures, with a particular emphasis on the so-called STiffness Evaluation Procedure (STEP), relying on the static application of prescribed displacements in a finite-element context. We show that a particularly slow convergence of the modal expansion is observed when applying the method with 3D elements, because of nonlinear couplings occurring with very high frequency modes involving 3D thickness deformations. Focusing on the case of flat structures, we first show by computing all the modes of the structure that a converged solution can be exhibited by using either static condensation or normal form theory.We then show that static modal derivatives provide the same solution with fewer calculations. Finally, we propose a modified STEP, where the prescribed displacements are imposed solely on specific degrees of freedom of the structure, and show that this adjustment also provides efficiently a converged solution.

Files in this item

Name:
LISPEN_CM_2020_THOMAS.pdf
Size:
3.894Mb
Format:
PDF
View/Open
CC BY
This document is available under CC BY license

Collections

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Related items

Showing items related by title, author, creator and subject.

  • Comparison of Reduction Methods for Finite Element Geometrically Nonlinear Beam Structures 
    Article dans une revue avec comité de lecture
    ccSHEN, Yichang; VIZZACCARO, Alessandra; KESMIA, Nassim; SALLES, Loïc; ccTHOMAS, Olivier; ccTOUZÉ, Cyril (MDPI AG, 2021-03)
    The aim of this contribution is to present numerical comparisons of model-order reduction methods for geometrically nonlinear structures in the general framework of finite element (FE) procedures. Three different methods ...
  • Reduced-order modeling of geometrically nonlinear rotating structures using the direct parametrisation of invariant manifolds 
    Article dans une revue avec comité de lecture
    MARTIN, Adrien; OPRENI, Andrea; ccVIZZACCARO, Alessandra; ccDEBEURRE, Marielle; SALLES, Loic; FRANGI, Attilio; ccTHOMAS, Olivier; TOUZÉ, Cyril (Centre pour la Communication Scientifique Directe (CCSD), 2023-06)
    The direct parametrisation method for invariant manifolds is a nonlinear reduction technique which derives nonlinear mappings and reduced-order dynamics that describe the evolution of dynamical systems along a low-dimensional ...
  • On the frequency response computation of geometrically nonlinear flat structures using reduced-order finite element models 
    Article dans une revue avec comité de lecture
    GIVOIS, Arthur; GROLET, Aurélien; ccTHOMAS, Olivier; DEÜ, Jean-François (Springer Verlag, 2019)
    This paper presents a general methodology to compute nonlinear frequency responses of flat structures subjected to large amplitude transverse vibrations, within a finite element context. A reduced-order model (ROM)is ...
  • Experimental analysis of nonlinear resonances in piezoelectric plates with geometric nonlinearities 
    Article dans une revue avec comité de lecture
    GIVOIS, Arthur; DEÜ, Jean-François; ccTHOMAS, Olivier; ccGIRAUD-AUDINE, Christophe (Springer Science and Business Media LLC, 2020-10)
    Piezoelectric devices with integrated actuation and sensing capabilities are often used for the development of electromechanical systems. The present paper addresses experimentally the nonlinear dynamics of a fully integrated ...
  • Dynamics of piezoelectric structures with geometric nonlinearities: A non-intrusive reduced order modelling strategy 
    Article dans une revue avec comité de lecture
    GIVOIS, Arthur; DEÜ, Jean-François; ccTHOMAS, Olivier (Elsevier BV, 2021-09)
    A reduced-order modelling to predictively simulate the dynamics of piezoelectric structures with geometric nonlinearities is proposed in this paper. A formulation of three-dimensional finite element models with global ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales