• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic damage type classification and severity quantification using signal based and nonlinear model based damage sensitive features

Article dans une revue avec comité de lecture
Author
GHRIB, Meriem
ccRÉBILLAT, Marc
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
VERMOT DES ROCHES, Guillaume
108449 SDTools
ccMECHBAL, Nazih
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/19677
DOI
10.1016/j.jprocont.2018.08.002
Date
2019
Journal
Journal of Process Control

Abstract

Structural health monitoring (SHM) is an emerging technology designed to automate the inspectionprocess undertaken to assess the health condition of structures. The SHM process is classically decom-posed into four sequential steps: damage detection, localization, classification, and quantification. Thispaper addresses damage type classification and severity quantification issues as classification problemswhereby each class corresponds to a given damage type or a certain damage extent. A Support VectorMachine (SVM) is used to perform multi-class classification task. Classically, Signal Based Features (SBF)are used to train SVMs when approaching SHM from a machine learning perspective. In this work, start-ing from the assumption that damage causes a structure to exhibit nonlinear response, it is investigatedwhether the use of Nonlinear Model Based Features (NMBF) increases classification performance. NMBFare computed based on parallel Hammerstein models which are identified with an Exponential SineSweep (ESS) signal. A study of the sensitivity of classification performance to the noise contained in out-put signals is also conducted. Dimension reduction of features vector using Principal Component Analysis(PCA) is carried out in order to find out if it allows robustifying the classification/quantification processsuggested in this work. Simulated data on a cantilever beam with various damage types and severitiesas well as experimental data coming from a composite aeronautic plate with various damage severitiesgenerated with a unique and original laser process are considered for demonstration. For both applicationcases, results show that by introducing NMBF, classification performance is improved. Furthermore, PCAallows for high recognition rates while reducing features vector dimension.

Files in this item

Name:
PIMM_JPC_2019_REBILLAT.pdf
Size:
2.708Mb
Format:
PDF
Description:
Article
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Automatic Damage Quantification Using Signal Based And Nonlinear Model Based Damage Sensitive Features 
    Communication avec acte
    GHRIB, Meriem; VERMOT DES ROCHES, Guillaume; ccMECHBAL, Nazih; ccRÉBILLAT, Marc (2017)
    Structural Health Monitoring (SHM) can be de ned as the process of acquiring and analyzing data from on-board sensors to evaluate the health of a structure. Classically, an SHM process can be performed in four steps: ...
  • Laser shock a novel way to generate calibrated delamination in composites: concept and first results 
    Communication avec acte
    GHRIB, Meriem; BERTHE, Laurent; ECAULT, Romain; ccMECHBAL, Nazih; ccGUSKOV, Mikhail; ccRÉBILLAT, Marc (2015)
    Structural Health Monitoring (SHM) has been gaining importance in recent years. SHM aims at providing structures with similar functionality as the biological nervous system and it is organized into four main steps: detection, ...
  • Generation of controlled delaminations in composites using symmetrical laser shock configuration 
    Article dans une revue avec comité de lecture
    GHRIB, Meriem; BERTHE, Laurent; ECAULT, Romain; BEDREDDINE, Nas; ccMECHBAL, Nazih; ccGUSKOV, Mikhail; ccRÉBILLAT, Marc (Elsevier, 2017)
    Structural Health Monitoring (SHM) is defined as the process of implementing a damage identification strategy for aerospace, civil and mechanical engineering infrastructures. SHM can be organized into five main steps: ...
  • Signal-based versus nonlinear model-based damage sensitive features for delamination quantification in CFRP composites 
    Communication avec acte
    GHRIB, Meriem; BERTHE, Laurent; ccMECHBAL, Nazih; ccGUSKOV, Mikhail; ccRÉBILLAT, Marc (2017)
    Structural health monitoring (SHM) is an emerging technology designed to automate the inspection process undertaken to assess the health condition of structures. The SHM process is classically decomposed into four sequential ...
  • LASER shock delamination generation and machine learning-based damage quantification in CFRP composites plates 
    Communication avec acte
    GHRIB, Meriem; BERTHE, Laurent; ccMECHBAL, Nazih; ccGUSKOV, Mikhail; ccRÉBILLAT, Marc (A. Benjeddou and Z. Aboura, 2018)
    In the aeronautic industry, composite materials are becoming more widespread due to their high strength to mass ratio. Piezoelectric elements can be permanently incorporated on composite parts during the manufacturing ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales