Deep learning in heterogeneous materials: Targeting the thermo-mechanical response of unidirectional composites
Article dans une revue avec comité de lecture
Date
2020Journal
Journal of Applied PhysicsRésumé
In this communication, a multi-task deep learning-driven homogenization scheme is proposed for predicting the effective thermomechanical response of unidirectional composites consisting of a random array of inhomogeneity. Toward this end, 40 000 repeating unit cells (RUCs) comprising an arbitrary number of locally irregular inclusions are generated over a wide range of fiber volume fractions. The finite-volume direct averaging micromechanics is then employed to evaluate the homogenized thermo-mechanical moduli of each RUC. Subsequently, a two-dimensional deep convolution neural network (CNN) is constructed as a surrogate model to extract the statistical correlations between the RUC geometrical information and the corresponding homogenized response. The RUC images together with their homogenized moduli are divided into two datasets in a ratio of 9:1 with the former part used for training the CNN model and the latter part used for verification. The results presented in this contribution demonstrate that the deep CNN predictions exhibit remarkable correlations with the theoretical values generated by the finite-volume micromechanics, with a maximum relative prediction error of less than 8%, providing good support for the data-based homogenization approach.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureTU, Wenqiong; CHEN, Qiang (SAGE Publications, 2021)Electromechanical laminated composites with piezoelectric phases are increasingly being explored as multifunctional materials providing energy conversion between electric and mechanical energies. The current work explores ...
-
Article dans une revue avec comité de lectureLU, Chen; MA, Ning; CHEN, Zhuo; COSTES, Jean-Philippe (Springer Verlag, 2009)Traditional online or in-process surface profile (quality) evaluation (prediction) needs to integrate cutting parameters and several in-process factors (vibration, machine dynamics, tool wear, etc) for high accuracy. However ...
-
Article dans une revue avec comité de lectureCHEN, Qiang; CHEN, Weiqiu; WANG, Guannan (Elsevier, 2021)The effective and localized electro-magneto-elastic behavior of periodic unidirectional composites is investigated in this work. Instead of adopting the classical micromechanics models or variational principle-based ...
-
Article dans une revue avec comité de lectureDU, Xiaoxiao; CHEN, Qiang; CHATZIGEORGIOU, George; MERAGHNI, Fodil; ZHAO, Gang; CHEN, Xuefeng (Elsevier BV, 2024-08)An isogeometric homogenization (IGH) technique is constructed for the homogenization and localization of unidirectional composites with radially or circumferentially orthotropic carbon/graphite fibers. The proposed theory ...
-
Article dans une revue avec comité de lectureIn this contribution, a probabilistic micromechanics damage framework is presented to predict the macroscopic stress-strain response and progressive damage in unidirectional glass-reinforced thermoplastic polymer composites. ...