• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep learning of thermodynamics-aware reduced-order models from data

Article dans une revue avec comité de lecture
Auteur
HERNANDEZ, Quercus
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
BADIAS, Alberto
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
GONZALEZ, David
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccCUETO, Elias
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]

URI
http://hdl.handle.net/10985/20176
DOI
10.1016/j.cma.2021.113763
Date
2021
Journal
Computer Methods in Applied Mechanics and Engineering

Résumé

We present an algorithm to learn the relevant latent variables of a large-scale discretized physical system and predict its time evolution using thermodynamically-consistent deep neural networks. Our method relies on sparse autoencoders, which reduce the dimensionality of the full order model to a set of sparse latent variables with no prior knowledge of the coded space dimensionality. Then, a second neural network is trained to learn the metriplectic structure of those reduced physical variables and predict its time evolution with a so-called structure-preserving neural network. This data-based integrator is guaranteed to conserve the total energy of the system and the entropy inequality, and can be applied to both conservative and dissipative systems. The integrated paths can then be decoded to the original full-dimensional manifold and be compared to the ground truth solution. This method is tested with two examples applied to fluid and solid mechanics.

Fichier(s) constituant cette publication

Nom:
PIMM_CMAME_2021_HERNANDEZ.pdf
Taille:
2.800Mo
Format:
PDF
Fin d'embargo:
2022-01-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Structure-preserving neural networks 
    Article dans une revue avec comité de lecture
    HERNÁNDEZ, Quercus; BADÍAS, Alberto; GONZÁLEZ, David; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (Elsevier, 2021)
    We develop a method to learn physical systems from data that employs feedforward neural networks and whose predictions comply with the first and second principles of thermodynamics. The method employs a minimum amount of ...
  • Structure-preserving neural networks 
    Article dans une revue avec comité de lecture
    HERNÁNDEZ, Quercus; BADÍAS, Alberto; GONZÁLEZ, David; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (Elsevier, 2020)
    We develop a method to learn physical systems from data that employs feedforward neural networks and whose predictions comply with the first and second principles of thermodynamics. The method employs a minimum amount of ...
  • Thermodynamics-informed neural networks for physically realistic mixed reality 
    Article dans une revue avec comité de lecture
    ccHERNÁNDEZ, Quercus; ccBADIAS, Alberto; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (2023)
    The imminent impact of immersive technologies in society urges for active research in real-time and interactive physics simulation for virtual worlds to be realistic. In this context, realistic means to be compliant to the ...
  • Port-metriplectic neural networks: thermodynamics-informed machine learning of complex physical systems 
    Article dans une revue avec comité de lecture
    ccHERNÁNDEZ, Quercus; ccBADIAS, Alberto; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (2023)
    We develop inductive biases for the machine learning of complex physical systems based on the port-Hamiltonian formalism. To satisfy by construction the principles of thermodynamics in the learned physics (conservation of ...
  • A thermodynamics-informed active learning approach to perception and reasoning about fluids 
    Article dans une revue avec comité de lecture
    ccMOYA GARCÍA, Beatriz; ccBADIAS, Alberto; GONZALEZ, David; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (2023)
    Learning and reasoning about physical phenomena is still a challenge in robotics development, and computational sciences play a capital role in the search for accurate methods able to provide explanations for past events ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales